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1. Introduction

Diffusion processes are extensively used for modelling continuous time phenomena in many
scientific areas; an incomplete list with some indicative references includes economics (Black
and Scholes, 1973; Chan et al., 1992; Cox et al., 1985; Merton, 1971), biology (McAdams and
Arkin, 1997), genetics (Kimura and Ohta, 1971; Shiga, 1985), chemistry (Gillespie, 1976, 1977),
physics (Obuhov, 1959) and engineering (Pardoux and Pignol, 1984). Their appeal lies in the
fact that the model is built by specifying the instantaneous mean and variance of the process
through a stochastic differential equation (SDE). Specifically, a diffusion process V is defined
as the solution of an SDE of the type

dVs =b.Vs; θ/ ds+σ.Vs; θ/ dBs, .1/

driven by the scalar Brownian motion B. The functionals b.·; θ/ and σ.·; θ/ are called the drift
and the diffusion coefficient respectively and are allowed to depend on some parameters θ∈Θ.
They are presumed to satisfy the regularity conditions (locally Lipschitz, with a linear growth
bound) that guarantee a weakly unique, global solution of equation (1); see chapter 4 of Kloeden
and Platen (1995). In this paper we shall consider only one-dimensional diffusions, although
multivariate extensions are possible.

For sufficiently small time increment dt and under certain regularity conditions (see Kloeden
and Platen (1995)), Vt+dt −Vt is approximately Gaussian with mean and variance given by the
so-called Euler (or Euler–Maruyama) approximation

Vt+dt ≈Vt +b.Vt ; θ/ dt +σ.Vt ; θ/Y
√

dt, where Y ∼N.0, 1/,
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though higher order approximations are also available. The exact dynamics of the diffusion
process are governed by its transition density

pt.v, w; θ/=P.Vt ∈dw|V0 =v; θ/=dw, t> 0, w, v∈R: .2/

We shall assume that the process is observed without error at a given collection of time in-
stances,

v ={Vt0 , Vt1 , . . . , Vtn}, 0= t0 <t1 < . . . <tn;

this justifies the notion of a discretely observed diffusion process. The time increments between
consecutive observations will be denoted ∆ti = ti − ti−1 for 1� i�n.

The log-likelihood of the data set v is

l.θ|v/=
n∑

i=1
li.θ/, li.θ/ := log{p∆ti .Vti−1 , Vti ; θ/}:

Unfortunately, in all except a few special cases the transition density of the diffusion process
and thus its likelihood are not analytically available. Therefore, it is already well documented
that deriving maximum likelihood estimates (MLEs) for discretely observed diffusion processes
is a very challenging problem. None-the-less, theoretical properties of such MLEs are now well
known in particular under ergodicity assumptions; see for example Kessler (1997) and Gobet
(2002).

Inference for discretely observed diffusions has been pursued in three main directions. One
direction considers estimators that are alternative to the MLE. Established methods within
this paradigm include techniques that are based on estimating functions (Bibby et al., 2002),
indirect inference (Gourieroux et al., 1993) and efficient methods of moments (Gallant and
Long, 1997). Another direction involves numerical approximations to the unknown likelihood
function. Aït-Sahalia (2002) advocated the use of closed form analytic approximations to the
unknown transition density; see Aït-Sahalia (2004) for multidimensional extensions. An alter-
native strategy has been to estimate an approximation to the likelihood by using Monte Carlo
(MC) methods. The approximation is given by Euler-type discretization schemes, and the esti-
mate is obtained by using importance sampling. The strategy was put forward by Pedersen (1995)
and Santa-Clara (1995) and was considerably refined by Durham and Gallant (2002). The third
direction employs Bayesian imputation methods. The idea is to augment the observed data with
values at additional time points so that a satisfactory complete-data likelihood approximation
can be written down and to use the Gibbs sampler or alternative Markov chain Monte Carlo
(MCMC) schemes; see Roberts and Stramer (2001), Elerian et al. (2001) and Eraker (2001).
An excellent review of several methods of inference for discretely observed diffusions is given
in Sørensen (2004).

The approach that is introduced in this paper follows a different direction, which exploits
recent advances in simulation methodology for diffusions. Exact simulation of diffusion sample
paths has become feasible since the introduction of the exact algorithm (EA) in Beskos et al.
(2004a). The algorithm is reviewed in Section 2 and relies on a technique called retrospective
sampling which was developed originally in Papaspiliopoulos and Roberts (2004). To date there
are two versions of the algorithm: EA1, which can be applied to a rather limited class of diffusion
processes, which we call D1, and EA2, which is applicable to the much more general D2-class;
all definitions are given in Section 2. The greater applicability of EA2 over EA1 comes at the
cost of higher mathematical sophistication in its derivation, since certain results and techniques
from stochastic analysis are required. However, its computer implementation is similar to that
of EA1.
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In this paper we show how to use the EA to produce a variety of methods that can be used for
maximum likelihood and Bayesian inference. We first discuss three unbiased MC estimators of
the transition density (2) for a fixed value of θ: the bridge method (Section 4; first proposed in
Beskos et al. (2004a)), the acceptance method (AM) (Section 5) and the Poisson estimator
(Section 6; first proposed in Wagner (1988a)). The last two estimators are evolved in Sections
5.1 and 6 to yield unbiased estimators of the transition density simultaneously for all θ ∈ Θ.
Thus, the simultaneous estimators can readily be used in conjunction with numerical optimiza-
tion routines to estimate the MLE and other features of the likelihood surface.

We proceed by introducing a Monte Carlo expectation–maximization (MCEM) algorithm in
Section 8. The construction of the algorithm crucially depends on whether there are unknown
parameters in the diffusion coefficient σ. The simpler case where only drift parameters are to be
estimated is treated in Section 8.1, whereas the general case necessitates the path transformations
of Roberts and Stramer (2001) and it is handled in Section 8.2.

Section 9 presents an MCMC algorithm which samples from the joint posterior distribution
of the parameters and of appropriately chosen latent variables. Unlike currently favoured meth-
ods, our algorithm is not based on imputation of diffusion paths but instead on what we call
a hierarchical simulation model. In that way, our MCMC method circumvents computing the
likelihood function.

Therefore, all our methodology is simulation based, but it has advantages over existing meth-
ods of this type for two reasons.

(a) The methods are exact in the sense that no discretization error exists, and the MC esti-
mation provides the only source of error in our calculations. Specifically, as the number
of MC samples increases, the estimated MLE converges to the true MLE and, as the
number of iterations in our MCMC algorithm increases, the samples converge to the
true posterior distribution of the parameters.

(b) Our methods are computationally efficient. Whereas approximate methods require rather
fine discretizations (and consequently a number of imputed values which greatly exceeds
the observed data size) to guarantee sufficient accuracy, our methodology suffers from
no such restrictions.

A limitation of the methods that are introduced here is that their applicability is generally
attached to that of the EA. However, on-going advances on the EA itself (Beskos et al., 2005a)
will weaken further the required regularity conditions so that a much larger class of diffusions
than D2 can be effectively simulated. It is expected that these enhanced simulation algorithms
will be of immediate use to the methods that are presented in this paper.

Our methods are illustrated on three different diffusion models. The first is the periodic
drift model, which belongs to D1 and, although it is quite interesting in its own right since its
transition density is unavailable, it is used primarily for exposition. However, we also consider
two more substantial and well-known applications: the logistic diffusion model for population
growth and the Cox–Ingersoll–Ross (CIR) model for interest rates. The former belongs to the
D2-class, whereas the latter is a diffusion process that is outside the D2-class, and it is used to
illustrate how our exact methods can be extended for processes for which the EA2 algorithm is
not applicable. Moreover, since we can calculate analytically the likelihood for this model, we
have a bench-mark to test the success of our approach. We fit the CIR model to a well-studied
data set, which contains euro–dollar rates (recorded every 10 days) between 1973 and 1995, to
allow for comparisons with existing methods.

All the algorithms that are presented in this paper are coded in C and have been executed on a
Pentium IV 2.6 GHz processor. We note that our methods are not computationally demanding
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according to modern statistical computing standards, and in the examples that we have consid-
ered the computing times (which are reported explicitly in the following sections) were in the
magnitude of seconds, or at worst minutes.

The structure of the paper is as follows. Section 2 reviews the EA. Section 3 sets up the context
of transition density estimation, Sections 4–6 present the three different estimators and Section 7
compares them theoretically and empirically. Section 8 introduces the MCEM algorithm and
Section 9 the MCMC algorithm. We finish with some general conclusions and directions for
further research in Section 10. Background material and proofs are collected in a brief appendix.

2. Retrospective exact sampling of diffusions

Understanding the statistical methodology to be presented in later sections presupposes the
introduction of the simulation techniques that are central to our approaches. In particular, we
need to understand the form of the output that is provided by the EA. The main references for the
material of this section are Beskos et al. (2004a) and Beskos and Roberts (2005). For this paper
it suffices to analyse the EA for simulating diffusion paths conditional on their ending point
(also known as diffusion bridges). In particular we shall show how to simulate a diffusion path
starting from V0 =v and ending at Vt =w, for any t > 0, v, w ∈R. Simulation of unconditioned
paths follows in the same lines and is sketched in Section 2.3. When necessary we characterize
the EA as conditional or unconditional to emphasize the type of diffusion simulation that it is
used for.

The EA performs rejection sampling by proposing paths from processes that we can simulate
and accepting them according to appropriate probability density ratios. The novelty lies in the
fact that the paths proposed are unveiled only at finite (but random) time instances and the
decision whether to accept the path or not can be easily taken.

It is essential that we first transform the diffusion process (1) into an SDE of unit diffusion
coefficient by applying the 1–1 transformation Vs →η.Vs; θ/=: Xs, where

η.u; θ/=
∫ u 1

σ.z; θ/
dz .3/

is any antiderivative of σ−1.·; θ/. Assuming that σ.·; θ/ is continuously differentiable, we apply
Itô’s rule to find that the SDE of the transformed process writes as

dXs =α.Xs; θ/ ds+dBs, X0 =x=η.V0; θ/, s∈ [0, t], .4/

where

α.u; θ/= b{η−1.u; θ/; θ}
σ{η−1.u; θ/; θ} − σ′{η−1.u; θ/; θ}

2
, u∈R;

η−1 denotes the inverse transformation and σ′ denotes the derivative with respect to the space
variable. In what follows we shall make the following standard assumptions for any θ∈Θ.

(a) α.·; θ/ is continuously differentiable.
(b) .α2 +α′/.·; θ/ is bounded below.
(c) Girsanov’s formula for X that is given in expression (32) in Appendix B.1 is a martingale

with respect to Wiener measure.

We define

A.u; θ/ :=
∫ u

α.z; θ/ dz
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to be any antiderivative of α. The transition density of X is defined as

p̃t.x, y; θ/=P.Xt ∈dy|X0 =x; θ/=dy, t> 0, x, y ∈R: .5/

Before proceeding, we require the following preliminary notation. Let C ≡C.[0, t], R/ be the set
of continuous mappings from [0, t] to R, C the corresponding cylinder σ-algebra and ω= .ωs, s∈
[0, t]/ a typical element of C. Let Q

.t,x,y/
θ denote the distribution of the process X conditioned

to start at X0 =x and to finish at Xt =y, for some fixed x and y, and W.t,x,y/ be the probability
measure for the corresponding Brownian bridge (BB). The notation highlights the dependence
of the measure Q

.t,x,y/
θ on θ.

The objective is to construct a rejection sampling algorithm to draw from Q
.t,x,y/
θ . The fol-

lowing lemma proved in Appendix B.1 is central to the methodology. By Nt.u/ we denote the
density of the normal distribution with mean 0 and variance t evaluated at u∈R.

Lemma 1. Under conditions (a)–(c) above, Q
.t,x,y/
θ is absolutely continuous with respect to

W.t,x,y/ with density

dQ
.t,x,y/
θ

dW.t,x,y/
.ω/= Nt.y −x/

p̃t.x, y; θ/
exp
{

A.y; θ/−A.x; θ/−
∫ t

0

1
2

.α2 +α′/.ωs; θ/ ds

}
:

Let

l.θ/� inf
u∈R

{.α2 +α′/.u; θ/=2},

r.ω, θ/� sup
s∈[0,t]

{.α2 +α′/.ωs; θ/=2− l.θ/}, ω∈C:

In general r is a positive random variable. However, in special cases it can be chosen indepen-
dently of ω, e.g. if .α2 +α′/.·; θ/ is bounded above. We now define the non-negative function
0�φ�1 which transforms a given path ω as follows:

φ.ωs; θ/= 1
r.ω, θ/

{
.α2 +α′/.ωs; θ/

2
− l.θ/

}
, s∈ [0, t]: .6/

It is now clear that

dQ
.t,x,y/
θ

dW.t,x,y/
.ω/∝ exp

{
−r.ω, θ/

∫ t

0
φ.ωs; θ/ ds

}
�1, W.t,x,y/—almost surely: .7/

Thus we have managed in expression (7) to bound the density ratio. The key to proceed to a
feasible rejection sampler is to recognize expression (7) as a specific Poisson process probability.

Theorem 1. Let ω∈C, Φ be a homogeneous Poisson process of intensity r.ω, θ/ on [0, t]× [0, 1]
and N be the number of points of Φ below the graph s 	→φ.ωs; θ/. Then

P.N =0|ω/= exp
{

−r.ω, θ/
∫ t

0
φ.ωs; θ/ ds

}
:

Theorem 1 suggests rejection sampling by means of an auxiliary Poisson process as follows.

Step 1: simulate a sample path ω∼W.t,x,y/.
Step 2: calculate r.ω, θ/; generate a marked Poisson process Φ = {Ψ, Υ}, with points Ψ =
{ψ1, . . . ,ψκ} that are uniformly distributed on [0, t] and marks Υ = {υ1, . . . ,υκ} that are
uniformly distributed on [0, 1], where κ∼Po{r.ω, θ/t}.
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Step 3: compute the acceptance indicator

I :=
κ∏

j=1
I[φ.ωψj ; θ/<υj]: .8/

Step 4: if I =1, i.e. {N =0} has occurred, then accept ω; otherwise return to step 1.

Unfortunately, this ‘algorithm’ is impossible to implement since it requires the simulation of
complete BBs on [0, t]. However, it might be possible to determine I on the basis of only par-
tial information about the path proposed. For instance, when r is only a function of θ (see
Section 2.1) we can actually reverse the order in which steps 1 and 2 are carried out. Specifically,
we would first simulateΦ, and afterwards, retrospectively, we would realizeω at the time instances
that are determined by Ψ, since this is sufficient for determining I. The technique of exchanging
the order of simulation to implement in finite time simulation of infinite dimensional random
variables has been termed retrospective sampling in Papaspiliopoulos and Roberts (2004).

The general framework under which the EA operates assumes that it is possible to write

r.ω, θ/= r{k.ω/, θ}
where k.ω/ has the following properties.

(a) k.ω/ is finite dimensional.
(b) The law of k.ω/ can be simulated (under W.t,x,y/).
(c) The finite dimensional distributions of W.t,x,y/ given k.ω/ can be simulated.

Under these conditions, the following retrospective implementation of the rejection sampler
can be carried out in finite time: the EA.

Step 1: simulate k.ω/.
Step 2: generate a realization of the marked Poisson process Φ={Ψ, Υ} of rate r{k.ω/, θ}.
Step 3: simulate the skeleton {ωψ1 , . . . ,ωψκ}, conditionally on k.ω/.
Step 4: compute the acceptance indicator I.
Step 5: if I = 1, then accept the skeleton proposed, and return k.ω/ and S.ω/ := {.0, x/,
.ψ1,ωψ1/, . . . , .ψκ,ωψκ/, .t, y/}; otherwise return to step 1.

S.ω/ is an exact draw from a finite dimensional distribution of Q
.t,x,y/
θ , which can be filled in

at any required times afterwards using simply BB interpolation (see Section 2.3). The technical
difficulty of finding or simulating k.ω/, and consequently simulating the process at some time
points given k.ω/, imposes some restrictions on the applicability of the EA. We now describe
the two cases where the algorithm can be easily applied.

2.1. Exact algorithm 1 (EA1)
Implementation of the EA is straightforward when r does not depend on ω. This will be true
within the following diffusion class.

Definition 1. We say that a diffusion process V with SDE (1) belongs to D1, and write V ∈D1,
if the drift of the transformed process Xs = η.Vs; θ/, s ∈ [0, t], satisfies conditions (a)–(c) below
equation (4) and .α2 +α′/.·; θ/ is bounded above.

In this case

r.ω, θ/≡ r.θ/

= sup
u∈R

{.α2 +α′/.u; θ/=2− l.θ/}:
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Within D1, step 1 of the EA is unnecessary, since no information about the path is a priori needed
for determining the Poisson rate. Moreover, step 3 entails simulation from a finite dimensional
distribution of the BB (see Appendix A).

2.1.1. Example 1 (periodic drift)
Consider the SDE

dXs = sin.Xs −θ/ ds+dBs:

Though apparently simple, the SDE cannot be solved analytically. However, the EA1 algorithm
can be applied since X∈D1 with l.θ/=− 1

2 and r.θ/=9=8. Our proposed methods will be tested
on the SINE data set simulated from X with the unconditional version of EA1 (Beskos and
Roberts, 2005) under the specifications n = 1000, ∆ti = 1, X0 = 0 and θ= π; see also Fig. 1.
When θ is to be estimated, we take Θ= [0, 2π] for identifiability.
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Fig. 1. First 250 values of (a) the SINE (using the EA1 algorithm) and (b) the LOG-GROWTH (using the
EA2 algorithm) data sets that are defined in example 1 and example 2 respectively
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2.2. Exact algorithm 2 (EA2)
The EA2 algorithm applies to the wider class of diffusion processes that is defined below.

Definition 2. We say that a diffusion process V with SDE (1) belongs to the class D2, and
write V ∈D2, if the drift of the transformed process Xs = η.Vs; θ/, s ∈ [0, t], satisfies conditions
(a)–(c) below equation (4) and

lim sup
u→∞

{.α2 +α′/.u; θ/}<∞ .9/

or lim supu→−∞{.α2 +α′/.u; θ/}<∞.

Owing to symmetry, we shall study only case (9). We define the following elements of the path
space C =C.[0, t], R/:

m= inf{ωs; s∈ [0, t]},

τ = sup{s∈ [0, t] :ωs =m};

thus m is the minimum value of a path ω, and τ is the time that the minimum is attained. Within
D2, k.ω/=m.ω/ and

r.ω, θ/≡ r.m, θ/

= sup
u∈[m,∞]

{.α2 +α′/.u; θ/=2− l.θ/}<∞, ω∈C:

As shown in Beskos et al. (2004a) and summarized in Appendix A, m satisfies the three require-
ments that are stated just above the EA. Simulation of .τ , m/ can be done by using simple
transformations of elementary random elements. It is known (Asmussen et al., 1995) that the
BB conditionally on .τ , m/ can be derived in terms of two independent Bessel bridges, each
operating on either side of .τ , m/. The Bessel bridge is defined as a BB that is constrained to be
positive and its simulation can be carried out by means of independent BBs; see Appendix A
for details.

2.2.1. Example 2 (the logistic growth model)
A popular model for describing the dynamics of a population which grows at a geometric rate
in an environment with limited feeding resources is given by the SDE

dVs =RVs.1−Vs=Λ/ ds+σVs dBs, θ= .R, Λ,σ/:

R is the growth rate per individual, Λ the maximal population that can be supported by the
resources of the environment and σ a noise parameter; for more details see chapter 6 of Goel
and Richter-Dyn (1974). Related models have been investigated in the context of financial eco-
nomics; see for example Gourieroux and Jasiak (2003). The transition density of V is not known
analytically. The modified process Xs =− log.Vs/=σ solves the SDE

dXs =
{
σ

2
− R

σ
+ R

σΛ
exp.−σXs/

}
ds+dBs:

It can be verified that V ∈D2 and that the EA2 algorithm is applicable with l.θ/=σ2=8 −R=2
and

r.m, θ/=max{.α2 +α′/.m; θ/=2− l.θ/, R2=2σ2}:

Our proposed methods will be tested on the LOG-GROWTH data set simulated from V by first
simulating from X by using the unconditional EA2 algorithm and then transforming Xs →Vs
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(Beskos et al., 2004a). We took n= 1000, ∆ti = 1, V0 = 700 and .R, Λ,σ/= .0:1, 1000, 0:1/; see
Fig. 1.

2.3. Unconditional exact algorithm and path reconstruction
The EA can be applied in a similar fashion when the diffusion is conditioned only on its initial
point X0 =x. The main difference lies in that the final value of the path proposed is distributed
according to the density

h.u/∝ exp{A.u; θ/− .u−x/2=2t}
(which is assumed to be integrable). Simulation from h can be done efficiently by using an
adaptive rejection sampling approach. Conditionally on this final point, the rest of the path is
a BB, and the EA proceeds as already described.

The output of the EA is a skeleton S.ω/ and possibly the collection k.ω/ of variables related
to the path. However, we can afterwards fill in this finite representation of an accepted path
ω according to the dynamics of the proposed BB and without further reference to the target
process. For the EA1 algorithm, the path reconstruction requires the simulation of the BBs that
connect the currently unveiled instances of an accepted pathω. For the EA2 algorithm, the extra
conditioning of the proposed BB on its minimum m implies that the filling in will be driven by
two independent Bessel bridges; see Appendix A.

3. Unbiased transition density estimators—preliminaries

As already discussed in Section 1 one of our primary aims is to provide unbiased MC estimators
of the transition density equation (2). The first step is to express equation (2) in terms of the
density (5) of the transformed process X. A change of variables argument yields

pt.v, w; θ/= p̃t{η.v; θ/, η.w; θ/; θ} |η′.w; θ/|, for all t, v, w, θ:

Thus, we shall demonstrate how to estimate p̃t.x, y; θ/ for arbitrary x, y and θ, using the uncon-
ditional EA (bridge method) and the conditional EA (AM, Poisson estimator). Automatically,
our methods yield unbiased estimators of the likelihood exp{l.θ|v/}, for any fixed θ ∈ Θ, so
coupled with grid or more elaborate stochastic search algorithms they can be used for locat-
ing the MLE. However, this pointwise exploration of the likelihood surface is expected to be
computationally inefficient owing to the introduction of independent MC error at each likeli-
hood evaluation, and it is not guaranteed to provide consistent MC estimators of the MLE.
We overcome these drawbacks by modifying the two methods based on the conditional EA to
give estimates of the likelihood function simultaneously for all θ∈Θ. The simultaneous methods
achieve estimation of the complete function

θ 	→ p̃t{η.v; θ/, η.w; θ/; θ}, for any fixed data points v, w, .10/

using a single stream of random elements which are independent of θ. Therefore, numerically
efficient optimization algorithms can be used to estimate features of the likelihood surface, such
as the MLE and level sets. The simultaneous AM has appealing consistency properties, as we
discuss in Section 5.1.

A fundamental result which the AM and the Poisson estimator are based on is the following
corollary to lemma 1. This important result is also contained in lemma 1 of Dacunha-Castelle
and Florens-Zmirou (1986).
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Corollary 1. Let X be the diffusion process in equation (4) with transition density p̃t.x, y; θ/.
Then

p̃t.x, y; θ/=Nt.y −x/ EW.t,x,y/

[
exp
{

A.y; θ/−A.x; θ/−
∫ t

0

1
2

.α2 +α′/.ωs; θ/ ds

}]
: .11/

4. The bridge method

The bridge method that was introduced in Beskos et al. (2004a) uses explicitly the output of the
unconditional EA to produce unbiased estimates of p̃t.x, y; θ/ for any fixed x, y and θ. We enrich
the notation for the transition density to allow for conditioning on further random elements:
let

p̃t.x, y|·; θ/=P.Xt ∈dy|X0 =x, ·; θ/=dy

be the conditional density of Xt given the starting value and any other random elements.
Consider some δ > 0. Suppose that S.ω/ and k.ω/ are the output of the unconditional EA for

simulating X started at X0 =x on the extended time interval [0, t +δ]. By conditional expectation
properties, we have that

p̃t.x, y; θ/=ES.ω/,k.ω/[p̃t{x, y|S.ω/, k.ω/; θ}]: .12/

The joint distribution of S.ω/ and k.ω/ is intractable but can be easily simulated by using the EA
on [0, t + δ]. Recall that the value of the path at times other than those specified by S.ω/ can be
obtained according to BB dynamics (in EA1) or Bessel bridge dynamics (in EA2). As a result,
the conditional distribution of Xt given S.ω/ and k.ω/, and thus density on the right-hand side
of equation (12), can be easily identified. By construction S.ω/ contains at least one time point
on either side of t, since .0, x/, .t + δ,ωt+δ/ ∈ S.ω/, and let t− and t+ denote the adjacent time
points, t− < t < t+. By the Markov property p̃t{x, y|S.ω/, k.ω/; θ} depends only on the points
.t−,ωt−/ and .t+,ωt+/ of S.ω/ and it will be equal either to a BB or a Bessel bridge density, both
of which are analytically available and can be computed explicitly.

Thus, the main attraction of the method is that the density of Xt given the simulated variables
(the skeleton) is explicitly known, unlike for example the MC method by Pedersen (1995), where
it is approximated.

5. The acceptance method

In this section we show how to use a simple identity that is related to the conditional EA to
derive an unbiased estimator of the transition density p̃t.x, y; θ/. Let a.x, y, θ/ be the acceptance
probability of the EA for simulating from Q

.t,x,y/
θ . Directly, expression (7) implies that

a.x, y, θ/=EW.t,x,y/

[
exp
{

−r.ω, θ/
∫ t

0
φ.ωs; θ/ ds

}]
: .13/

Substituting this expression in equation (11), and rearranging terms according to equation (6),
yields the following identity which relates the acceptance probability of the EA to the transition
density of the diffusion:

p̃t.x, y; θ/=Nt.y −x/ exp{A.y; θ/−A.x; θ/− l.θ/t}a.x, y, θ/: .14/

Recall the definition of the acceptance indicator I in expression (8), which we shall now rewrite
as I.x, y, θ, Φ,ω/ to emphasize the elements which determine its value: the Poisson process Φ,
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and the proposed bridge ω∼W.t,x,y/, unveiled at the times that are determined by Φ. By defin-
ition,

a.x, y, θ/=E{I.x, y, θ, Φ,ω/}, .15/

where the expectation is taken with respect to the joint distribution of Φ and ω. Thus, a
simple unbiased estimator of a.x, y, θ/ for any fixed θ, x and y can be obtained by record-
ing the number of times that the EA accepts a proposed skeleton in K, say, number of tri-
als.

Estimation of the transition density through equations (14) and (15) is referred to as the
AM. An essential feature of the resulting estimator is that it is almost surely bounded, since
I �1. As a result, all the moments of the estimator are finite.

5.1. The simultaneous acceptance method
In this section we upgrade the AM to yield an estimator of the complete map in expression (10).
The method is now referred to as the simultaneous AM (SAM). We emphasize that equa-
tions (13)–(15) are applied for x = x.θ/= η.v; θ/ and y = y.θ/= η.w; θ/. The simultaneous esti-
mator is obtained by expressing a.x, y, θ/ as an expectation of a function of θ, x, y and random
variables, none of which depends on θ, x and y. The method is presented for V ∈D1, since the
derivation of the SAM for V ∈D2 is technically much more difficult, and it is contained in Beskos
et al. (2005b), along with more theoretical results about the methods.

In the AM, the Poisson process Φ and the proposed path ω both depend on θ, since the
former is of rate r.θ/ and the latter is a BB from X0 =x to Xt =y. As a result a.x, y, θ/ can be
estimated only by running a separate MC experiment for each θ∈Θ. Below we show how the
thinning property of the Poisson process (see for example Section 5.1 of Kingman (1993)) and
the relocation invariance property of BBs (see Appendix A) can be exploited to decouple the
dependence between Φ, ω and θ.

The relocation invariance property of BBs suggests that we can rewrite the acceptance indi-
cator in terms of a standard BB, ω∼W.t,0,0/, as follows:

I.x, y, θ, Φ,ω/=
κ∏

j=1
I[φ{ωψj + .1−ψj=t/x+ .ψj=t/y; θ}<υj]: .16/

Suppose that we can find an rmax <∞, such that

r.θ/� rmax, for all θ∈Θ:

Let Φmax = {Ψmax, Υmax} be a marked Poisson process on [0, t] × [0, 1] with rate rmax and κ
number of points, κ∼ Po.rmaxt/. The thinning property for Poisson processes implies that the
process that is obtained by deleting each point of Φmax with probability 1− r.θ/=rmax is a Poisson
process with rate r.θ/. Conditionally on κ, let U = .U1, . . . , Uκ/ be a collection of independent
and identically distributed Un[0, 1] selection random variables. The thinning property implies
that we can rewrite equation (16) in terms of Φmax as

I.x, y, θ, Φmax,ω, U/=
κ∏

j=1
I[I[Uj >r.θ/=rmax]φ{ωψj + .1−ψj=t/x+ .ψj=t/y; θ}<υj];

note that only Poisson points for which Uj < r.θ/=rmax determine the value of I.

Theorem 2. Let ω∼ W.t,0,0/, and Φmax = {Ψmax, Υmax} be an independent marked Poisson
process of rate rmax with κ number of points. Then
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E{I.x, y, θ, Φmax,ω, U/|Ψmax,ω}=
κ∏

j=1

[
1− r.θ/

rmax
φ
{
ωψj +

(
1− ψj

t

)
x+ ψj

t
y; θ
}]

= r−κ
max

κ∏
j=1

[
rmax + l.θ/− 1

2
.α2 +α′/

×φ
{
ωψj +

(
1− ψj

t

)
x+ ψj

t
y; θ
}]

: .17/

a.x, y, θ/ is the expected value of equation (17) with respect to the joint distribution of Ψmax and
ω∼W.t,0,0/; thus equation (17) together with equation (14) determine an unbiased simultaneous
estimator of θ 	→ p̃t{η.v; θ/, η.w; θ/; θ}, for any fixed data points v and w. An MC estimator of
a.x, y, θ/ is obtained by averaging over independent realizations of equation (17).

5.1.1. Example: periodic drift
We applied the SAM to the SINE data set, choosing rmax =9=8. For two different MC sample
sizes, K=100 and K=1000, we used Brent’s optimization algorithm (which combines parabolic
interpolation with the golden section search algorithm; see section 10.2 of Press et al. (1992))
for finding the maximum of the log-likelihood. The MLE was estimated as 3.116, when K =100
(in 6 s), and 3.112 when K =1000 (in 57 s). Using numerical differentiation, the standard error
was estimated as 0.04 when both K = 100 and K = 1000. Fig. 2(a) shows the estimate of the
log-likelihood function based on the two different MC sample sizes.

When the model assumed is in D2, it is mathematically much more dificult to derive a formula
that is analogous to equation (17) which allows for simultaneous estimation of the likelihood
function. In EA2 the minimum m and the time τ when the minimum occurs both depend on θ.
Since the Poisson rate r is a function of m as well as θ, andω is simulated conditionally on .τ , m/,
the dependence of ω and Φ on θ is considerably more difficult than in EA1 to decouple and the
method requires novel couplings and results from stochastic analysis. Such constructions are
beyond the scope of this paper and are presented in Beskos et al. (2005b), where several other
issues related with the SAM are also tackled. In particular it is proved that the simultaneous
estimator for diffusions in D1 and D2 converges uniformly in θ to the likelihood function as the
number of MC samples increases. Under standard assumptions, this guarantees consistency of
the MC estimate of the MLE.

5.1.2. Example: logistic growth
We used the SAM in conjunction with the downhill simplex optimization method (section 10.4
of Press et al. (1992)) to locate the MLE of the LOG-GROWTH data set, for MC sample sizes
K=100 and K=1000. The estimates corresponding to .R, Λ,σ/ were .0:1098, 1014:89, 0:10057/

for K =100 (in 2 min) and .0:1097, 1014:78, 0:10057/ for K =1000 (in 20 min). Using numerical
differentiation the curvature of the estimated log-likelihood at the estimated MLE was found:(4567 0:072 −9601

0:011 −0:05
198464

)
:

The corresponding standard errors are (0.016, 9.5, 0.002). Fig. 2(b) shows the estimates of the
profile log-likelihood of R for the two MC sample sizes.

6. The Poisson estimator

Corollary 1 relates the transition density of the diffusion to an expectation over the BB mea-
sure. Thus, any unbiased estimator of the expectation on the right-hand side of equation (11)
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(a)

(b)

Fig. 2. Simultaneous estimate of (a) the log-likelihood θ for the SINE data set and (b) the profile log-like-
lihood R for the LOG-GROWTH data set, using the SAM with K D 100 (-- - - - - -) and K D 1000 ( ) MC
samples

corresponds to an unbiased estimator of p̃t.x, y; θ/. Generalizing, suppose that the expecta-
tion

EP.t,x,y/

[
exp
{

−
∫ t

0
f.ωs/ ds

}]
<∞ .18/

is to be estimated for arbitrary continuous function f and diffusion bridge measure P.t,x,y/. For
any c∈R, λ > 0, and path ω, we write

exp
{

−
∫ t

0
f.ωs/ ds

}
= exp.−ct/

∞∑
j=0

1
j!

{
λt

∫ t

0

c−f.ωs/

λt
ds

}j

= exp{.λ− c/t}E

[{∫ t

0

c−f.ωs/

λt
ds

}κ]
,
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where the expectation is taken with respect to κ∼ Po.λt/, conditionally on ω. If ψ∼ Un[0, t],
then {c−f.ωψ/}=λ is an unbiased estimator of

∫ t
0 {c−f.ωs/}=λt ds. Let Ψ={ψ1, . . . ,ψκ} be a

Poisson process of rateλ on [0, t], andω∼P.t,x,y/. Then, we obtain the following simple unbiased
estimator of expectation (18), which we call the Poisson estimator:

exp{.λ− c/t}λ−κ κ∏
j=1

{c−f.ωψj
/}: .19/

This estimator was introduced in the context of statistical physics by Wagner (1988a, 1989). It
can be derived from first principles that its second moment is

exp{.λ−2c/t}EP.t,x,y/

(
exp
[

1
λ

∫ t

0
{c−f.ωs/}2 ds

])
, .20/

which is not guaranteed to be finite. The choice of c and λ with the view of improving the
efficiency of the algorithm is discussed in Section 7.

Taking P.t,x,y/ ≡ W.t,x,y/, and f = .α2 + α′/=2, the Poisson estimator can be used with
equation (11) to estimate p̃t.x, y; θ/. This transition density estimator will also be referred to as
the Poisson estimator. A simultaneous estimation of the complete map θ 	→ p̃t{η.v; θ/, η.w; θ/; θ}
for any data points v and w merely requires decoupling of ω in expression (19) from x and y,
since Ψ clearly is independent of θ. Since in the current context P.t,x,y/ ≡W.t,x,y/, it suffices to
exploit the relocation invariance property of BBs and to rewrite expression (19) as

exp{.λ− c/t}λ−κ κ∏
j=1

[c−f{ωψj
+ .1−ψj=t/x+ .ψj=t/y}], ω∼W.t,0,0/: .21/

This estimator will be referred to as the simultaneous Poisson estimator. For more general diffu-
sion bridge measures, decoupling of ω from x and y can be cumbersome, since the intuitive
relocation invariance property does not hold in general. Such a case is treated in the following
section.

6.1. Inference for the Cox–Ingersoll–Ross model
We apply the Poisson estimator to infer about a diffusion process outside D2, the CIR diffusion
model, which solves

dVs =ρ.µ−Vs/ ds+σ
√

Vs dBs, θ= .ρ,µ,σ/:

It is assumed that all parameters are positive and 2ρµ > σ2, which guarantees that V does not
hit zero (see page 391 of Cox et al. (1985)). We fit the CIR model to a well-studied data set (used
among others by Aït-Sahalia (1996), Elerian et al. (2001) and Roberts and Stramer (2001))
which contains daily euro–dollar rates between 1973 and 1995, to allow for comparisons with
existing methods. We take a subsample of 550 values, corresponding to time intervals of 10
days, since the diffusion model seems more appropriate on that scale. We call this subsample
the EURODOLLAR data set and plot it in Fig. 3(a).

In this case η.u; θ/=2
√

u=σ; thus the transformation Xs =η.Vs; θ/ solves the SDE

dXs =
{(

2ρµ
σ2 − 1

2

)
1

Xs
− ρ

2
Xs

}
ds+dBs:

Setting α.u; θ/= .2ρµ=σ2 −0:5/=u−ρu=2, it is easy to check that the CIR model is outside D2.
X is almost surely positive and its distribution is absolutely continuous with respect to that of
the Bessel process. Let Q

.t,x,y/
θ and R.t,x,y/ be the bridge measures of X and the Bessel process
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Fig. 3. (a) EURODOLLAR data set and (b) real ( ) profile log-likelihood of σ and its estimation (– – –)
by using the simultaneous Poisson estimator with λDc D1 and K D100 MC samples

respectively, and p̃t.x, y; θ/ and qt.x, y/ be the corresponding transition densities. Direct appli-
cation of lemma 1 yields an analogue of equation (11) for positive diffusions:

p̃t.x, y; θ/= y

x
qt.x, y/ ER.t,x,y/

[
exp
{

A.y; θ/−A.x; θ/−
∫ t

0

1
2

.α2 +α′/.ωs; θ/ ds

}]
: .22/

Thus, we can readily use the Poisson estimator to estimate the transition density of the CIR
model for a fixed θ∈Θ. However, simultaneous estimation for all θ∈Θ is non-trivial, since the
decoupling of ω∼R.t,x,y/ from x and y is not straightforward. The appropriate construction is
in fact a variation of the approach that we have devised for the SAM for diffusions in D2 and
is contained in Beskos et al. (2005b). This stems from the characterization of the Bessel bridge
as a BB that is conditioned to remain positive. As in the EA2 algorithm, we consider first the
minimum m of the Bessel bridge and subsequently reconstruct the path given m. The distribu-
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tion of m is the restriction on .0, ∞/ of the distribution of the minimum of the corresponding
BB. Given m, the path can be reconstructed exactly as if it were a BB with known minimum m.

We applied the simultaneous Poisson estimator to the EURODOLLAR data set taking, after
some pilot tuning, λ= c = 1. In Fig. 3(b) we show the real and the estimated profile log-likeli-
hood for σ by using the downhill simplex optimization algorithm. Even with 100 MC samples
the estimated curve coincides with the true curve, although it can be shown that the variance of
the estimator is infinite in this case.

7. Comparison of different transition density estimators

We have introduced three different methods which can be used to estimate the diffusion transi-
tion density. Whereas the AM (and SAM) were devised solely for this purpose, it is important
to recognize that the other two methods have greater scope. The Poisson estimator can estimate
expectations of general diffusion exponential functionals (18). The bridge method is based on
equation (12), which is a form of Rao–Blackwellization that can be used to estimate other con-
ditional probabilities for diffusions, e.g. hitting probabilities.

In the context of transition density estimation, the weakness of the AM and the bridge
method over the Poisson estimator is that their applicability is determined by that of the EA.
On the contrary, the Poisson estimator can be used without assuming that the drift α is suitably
bounded.

A significant advantage of the AM over the competitors is that it is guaranteed to have finite
polynomial moments. For the bridge method little is known since we have not yet derived ana-
lytic expressions for its variance. Checking whether the variance of the Poisson estimator is
finite is in general tedious. A notable exception is when the diffusion is in D1, where, since
f = .α2 +α′/=2 is bounded, it is easy to see from expression (20) that the variance will be finite
for any finite c and λ. Two examples outside D1 for which we know that this will not be the case
are the CIR and the logistic growth models.

A feature of the bridge method which is likely to make it generally less efficient than the
competitors is that the simulated paths ignore the final data point, since the method is founded
on the unconditional EA.

When the aim is to explore features of the likelihood surface, it is imperative that the estima-
tors yield estimates of the transition density simultaneously for all θ∈Θ. The bridge method is
the only method for which we have been unable to achieve that.

Although derived from very different perspectives, the SAM and the simultaneous Pois-
son estimator are related. Taking λ= rmax, c = λ+ l.θ/ and contrasting equation (17) with
expression (21) reveals that, in D1, the SAM is a special case of the simultaneous Poisson
estimator. Moreover, there are certain optimality properties of this choice. For any c such
that c > r.θ/ + l.θ/, expression (20) is bounded above by exp.[−2c +λ+ {c − l.θ/}2=λ]t/. This
quantity is minimized by any pair .λ, c/ such that c =λ+ l.θ/, where λ� r.θ/. Requiring that
the Poisson estimator yields estimates simultaneously for all θ∈Θ, the computationally most
efficient bound on the variance is achieved by the choice λ= rmax and c=λ+ l.θ/, under which
the Poisson estimator and the SAM coincide. Note that, in this choice, λ is the range and c

the maximum of the functional .α2 +α′/.u; θ/=2 over all u∈R, θ∈Θ. It is not obvious whether
choosing c > r.θ/+ l.θ/ is optimal. The connection between the two methods is less transparent
outside D1. The rate of the Poisson process that is used in the SAM for diffusions in D2 will
depend on the minimum of the path proposed, and it is precisely because of this dependence
that the estimator is almost surely bounded. The Poisson process and the path proposed in the
Poisson estimator are inherently independent. Guided by our findings for D1, we propose to
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Table 1. Summary of 500 independent estimations of the MLE of the LOG-GROWTH data
set†

Parameter Estimator Minimum 1st quartile Median 3rd quartile Maximum

R SAM 0.1051 0.1083 0.1092 0.1100 0.1130
Simultaneous 0.1030 0.1072 0.1087 0.1099 0.1139

Poisson
Λ SAM 1010.13 1013.91 1014.89 1016.07 1021.07

Simultaneous 1008.88 1013.48 1014.93 1016.50 1022.80
Poisson

σ SAM 0.10045 0.10053 0.10056 0.10058 0.10065
Simultaneous 0.10040 0.10050 0.10054 0.10058 0.10069

Poisson

†Each estimation is based on K = 10 MC samples. For each parameter, the first row corresponds
to the SAM and the second to the simultaneous Poisson estimator, with λ= 1 and c = l.θ/ +λ.
The average time for each experiment was around five times higher in the SAM compared with the
simultaneous Poisson estimator.

choose λ according to an estimate of the range of .α2 +α′/.u; θ/=2 over all u∈R, θ∈Θ, and to
take c=λ+ l.θ/. This choice has proved successful empirically.

A brief study of the performance of the SAM and the simultaneous Poisson estimator in
estimating the MLE of the LOG-GROWTH data set is summarized in Table 1. The parameters
λ and c were chosen as suggested above. Taking into account its smaller computational cost, the
simultaneous Poisson estimator is more efficient in this example. A feature that is not depicted
in Table 1 is the sensitivity of the simultaneous Poisson estimator on the choice of c and λ. The
method can produce unreliable estimates, especially with few MC samples, for certain choices
of the tuning parameters. In contrast the SAM is fully automatic.

8. A Monte Carlo expectation–maximization approach

The EM algorithm (Dempster et al., 1977) is suitable for locating the MLE when the likelihood
of the observed data is intractable but the joint likelihood of the observed and some appropri-
ately defined missing data is of a simple form. At the expense of some additional effort the EM
algorithm can also be used to obtain an estimate of the observed information matrix. To fix ideas,
let vobs ={V0 =v, Vt =w} be the observed data, which consist of discrete time observations from
equation (1) (without loss of generality we assume two data points). It is assumed throughout
this section that V ∈D2. When the diffusion coefficient does not depend on unknown parame-
ters, i.e. when σ.·; θ/=σ.·/, we can treat the paths between consecutive observations as missing
data and use Girsanov’s formula (32) to form the complete likelihood. This naturally leads to
an EM algorithm whose implementation is described in the next section. However, when the
diffusion coefficient depends on θ, the missing paths should be appropriately transformed, as
shown in Section 8.2.

8.1. Monte Carlo expectation–maximization for diffusions with known diffusion
coefficient
We first transform the process Vs → Xs = η.Vs/, where η is defined in equation (3) and, since
by assumption σ.·; θ/ = σ.·/, η does not depend on θ. Thus, we define xobs = {X0 = x, Xt =
y}, x = η.v/ and y = η.w/; xobs contains discrete time observations from the diffusion X with
SDE (4). The observed log-likelihood is l.θ|xobs/= log{p̃t.x, y; θ/}. Let xmis denote the missing
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path, .Xs, s∈ [0, t]/, and xcom ={xobs, xmis} denote the complete data, which is the continuous
diffusion path starting from X0 =x and finishing at Xt =y. The complete log-likelihood is given
by Girsanov’s formula (32),

l.θ|xcom/=A.y; θ/−A.x; θ/− 1
2

∫ t

0
.α2 +α′/.Xs; θ/ ds, .23/

and

xmis|xobs; θ∼Q
.t,x,y/
θ :

The E-step of the EM algorithm requires analytic evaluation of

Q.θ, θ′/=Exmis|xobs;θ′{l.θ|xcom/}, θ∈Θ:

However, note that we can introduce the random variable U ∼Un[0, t], which is independent of
both xmis and xobs, and rewrite

Q.θ, θ′/=A.y; θ/−A.x; θ/− t
2

E.xmis,U/|xobs; θ′{.α2 +α′/.XU ; θ/}: .24/

We cannot perform analytically the expectation above. However, since we can simulate U, and
Xu for any u by using the EA, we adopt an MC implementation of the EM algorithm. The
MCEM algorithm was introduced in Wei and Tanner (1990); convergence and implementation
issues were tackled in Chan and Ledolter (1995), Sherman et al. (1999) and Fort and Moulines
(2003). It is well documented (see for example Fort and Moulines (2003), and references therein)
that the number of MC samples that are used to approximate the expectation should increase
with the EM iterations. We have followed this approach in our examples. Several methods have
been proposed for using the EM algorithm to estimate the observed information matrix; see
for example Louis (1982), Jamshidian and Jennrich (2000) and Meng and Rubin (1991). We
have used the method that was suggested by Louis (1982), where we use MC estimations of the
required expectations, as in Wei and Tanner (1990).

8.1.1. Example: periodic drift
We applied MCEM to the SINE data set; the EM iterations are presented in the second column
of Table 2. The M-step was implemented by using Brent’s optimization method. The conver-
gence is very rapid, essentially in one iteration, and the estimated MLE is in perfect agreement
with the estimate that is obtained with the SAM in Section 5.1. The standard error was estimated
to be 0.04.

8.2. The general case: missing information and a path transformation
An important result from stochastic analysis, which has found numerous applications in statis-
tical inference for diffusion processes (see for instance Barndorff-Nielsen and Shephard (2002)),
is that a continuous time diffusion path on an interval of time [0, t] can be used to estimate per-
fectly the parameters that are involved in σ.·; θ/. A similar result does not hold for parameters in
the drift b.·; θ/, where perfect estimation from continuous time data typically holds asymptoti-
cally as t →∞. However, a finite number of discrete time observations can contain only finite
information about any of the parameters. The computational implication is that we cannot
construct an EM algorithm as in Section 8.1 where the paths between the observed data are
treated as missing data. According to the EM terminology, this augmentation scheme leads to
a fraction of missing information equal to 1. This problem was first encountered in an MCMC
framework by Roberts and Stramer (2001) and Elerian (1999).
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Table 2. MCEM iterations for the SINE (second column)
and the LOG-GROWTH (last three columns) data sets†

Iteration j θ.j/ R.j/ Λ.j/ σ.j/

0 0.500 0.7000 1500.00 0.7000
1 3.119 0.1099 1015.32 0.1006
2 3.114 0.1097 1014.80 0.1006
3 3.115 0.1097 1014.83 0.1006
4 3.115 0.1097 1014.51 0.1006
5 3.114 0.1097 1014.66 0.1006
6 3.113 0.1097 1014.76 0.1006
7 3.113 0.1097 1014.67 0.1006
8 3.113 0.1097 1014.75 0.1006
9 3.113 0.1097 1014.71 0.1006

10 3.113 0.1095 1014.78 0.1006

†The first five iterations were performed using 200 MC sam-
ples and the last five using 2000 samples. The execution times
were 177 s for the SINE data and 18 min for the LOG-
GROWTH data.

One remedy to this type of problems is to find a suitable invertible transformation of the miss-
ing data to reduce the augmented information. In particular, we want to transform the process
so that the diffusion coefficient is independent of θ, exploiting the result that continuous time
paths contain only finite information about the drift parameters. Our approach is in the spirit of
Roberts and Stramer (2001). We start by transforming the process, Vs →Xs =η.Vs; θ/, where η is
the transformation in equation (3); therefore X0 =x.θ/=η.v; θ/ and Xt =y.θ/=η.w; θ/. Unlike
in Section 8.1, .Xs, s ∈ [0, t]/ is not directly observed; instead it is a function of the unknown
parameters. The second level of path transformation is from Xs → Ẋs where

Ẋs :=Xs −
(

1− s

t

)
x.θ/− s

t
y.θ/, s∈ [0, t]: .25/

Ẋ is a diffusion bridge starting from Ẋ0 =0 and finishing at Ẋt =0. Its dynamics depend on θ and
are typically intractable; nevertheless it is easy to simulate Ẋs at any time s∈ [0, t], conditionally
on vobs and a specific value of θ, following the procedure

(a) find x=x.θ/ and y =y.θ/,
(b) simulate Xs from the bridge diffusion measure Q

.t,x,y/
θ by using the EA and

(c) apply the transformation in expression (25).

The inverse transformation from Ẋ to X is

gθ.Ẋs/ := Ẋs +
(

1− s

t

)
x.θ/+ s

t
y.θ/, s∈ [0, t]:

We propose an augmentation scheme where vmis = .Ẋs, s ∈ [0, t]/ and vcom = {vobs, vmis}. The
following lemma, which is proved in Appendix B, gives the complete log-likelihood.

Lemma 2. The log-likelihood of the complete data vcom is given by

l.θ|vcom/= log|η′.w; θ/|+ log[Nt{y.θ/−x.θ/}]+A{y.θ/; θ}−A{x.θ/; θ}

−
∫ t

0

1
2 .α2 +α′/{gθ.Ẋs/; θ}ds:
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Arguing as in Section 8.1, we have that

Q.θ, θ′/= log|η′.w; θ/|+ log[Nt{y.θ/−x.θ/}]+A{y.θ/; θ}−A{x.θ/; θ}
− t

2
E.vmis,U/|vobs;θ′ [.α2 +α′/{gθ.ẊU/; θ}]:

We can now apply MCEM in a similar fashion to that in Section 8.1.

8.2.1. Example: logistic growth
We used MCEM to estimate the MLE and the observed information for the LOG-GROWTH
data set. The results in Table 2 indicate rapid convergence. We used the Fletcher–Reeves version
of the conjugate gradient method for the M-step of the algorithm (see section 10.5 of Press et al.
(1992)). The standard errors are estimated using K =2000 as (0.015, 9.5, 0.002).

9. Hierarchical simulation models and inference using Markov chain
Monte Carlo methods

In this section we develop an MCMC algorithm for Bayesian inference for discretely observed
diffusions. The stationary distribution of our MCMC algorithm is the exact posterior distribu-
tion of the parameters. However, it is not only the exactness which distinguishes our approach
from competitive existing MCMC algorithms. Existing methods follow a path augmentation
approach, as we did in the EM algorithm in Section 8. The missing continuous paths are
approximated by a fine discrete time Markov chain, whose transition is assumed to follow an
Euler-type approximation to the true diffusion transition. The joint distribution of the observed
and missing data is given by an appropriate approximation of Girsanov’s formula. Then, a Gibbs
sampler (or more general componentwise updating MCMC algorithm) is used to sample from
the approximate posterior distribution of the parameters and the missing paths. Often, for any
two data points several points need to be imputed in between them to obtain a good approxima-
tion to the true posterior of θ. However, the performance of basic MCMC schemes can severely
deteriorate as the amount of imputation increases; see Roberts and Stramer (2001) for details.

The approach that is introduced here is not based on augmentation of paths. Instead, we con-
struct a graphical model which involves the variables that are used in the EA, and we show that
the posterior distribution of the parameters is obtained as a marginal in this graphical model.
Thus, we use an appropriate Metropolis–Hastings algorithm to sample from the joint posterior
of all variables in the graph. One of the steps of the sampler involves running the conditional
EA. The state space of our MCMC algorithm typically has much smaller dimension than the
competing augmentation methods and as a result it can be computationally more efficient.
However, a comparison between alternative MCMC methods is not carried out in this paper
and will be reported elsewhere.

We describe in detail the MCMC algorithm when it is assumed that V ∈D1. The derivation of
the algorithm when V ∈D2 is technically much more difficult, and it can be found in Beskos et al.
(2004b). Nevertheless, we present simulation results for both cases. An essential ingredient of
the algorithm is the following lemma which derives the density of the output of the conditional
EA1 algorithm.

Lemma 3. Consider any two fixed points x and y. Let Φ = {Ψ, Υ} be the marked Poisson
process on [0, t] × [0, 1] with rate r.θ/ and number of points κ∼ Po{r.θ/t}, which is used in
EA1 for simulating from Q

.t,x,y/
θ . Let ω∼W.t,0,0/, and I be the acceptance indicator (16) which

decides whether .ωs + .1− s=t/x+ .s=t/y, s∈ [0, t]/ is accepted as a path from Q
.t,x,y/
θ . Then, the

conditional density of ω and Φ given {I =1}, π.ω, Φ|θ, x, y, I =1/, is
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exp[t{1− r.θ/}]r.θ/κ

a.x, y, θ/

κ∏
j=1

I

[
φ

{
ωψj +

(
1− ψj

t

)
x+ ψj

t
y; θ
}

<υj

]
, .26/

with respect to the product measure Φ×W.t,0,0/, where Φ is the measure of a unit rate Poisson
process on [0, t]× [0, 1], and a.x, y, θ/ is the acceptance probability of the EA1 algorithm.

To clarify the notation, in the remainder of the section .ωÅ, ΦÅ/ represent the accepted random
elements in EA1, with density π.ωÅ, ΦÅ|θ, x, y/ given in expression (26); ΦÅ, and ωÅ at any col-
lection of times, can be easily sampled by using the conditional EA1 algorithm.

Let π.θ/ denote an appropriately specified prior density for θ. The aim is to sample from
the posterior distribution of θ given diffusion observations v ={Vt0 , . . . , Vtn}, say π.θ|v/, where
V ∈D1. It is convenient to define

xi =xi.θ/ :=η.Vti ; θ/, i=0, . . . , n, .27/

where η is the transformation in equation (3). For a given θ, the xis are discrete time samples from
SDE (4). For 1� i�n, let ωÅ

i = .ωÅ
i,s, s∈ [ti−1, ti]/ and ΦÅ

i ={ΨÅ
i , ΥÅ

i } be the accepted elements
of the conditional EA1 algorithm applied on the time interval [ti−1, ti]; S.ωÅ

i / will denote the
corresponding output skeleton. We construct the following hierarchical model, which is defined
through the densities:

θ∼π.θ/,

Vti |Vti−1 , θ∼p∆ti .Vti−1 , Vti ; θ/,

.ωÅ
i , ΦÅ

i /|θ, xi−1.θ/, xi.θ/∼π{ωÅ
i , ΦÅ

i |θ, xi−1.θ/, xi.θ/}:

.28/

Note that in this hierarchical model the observed data are in the middle of the hierarchy. We
term expression (28) a hierarchical simulation model, to emphasize that it represents the order in
which variables must be simulated to ensure that the output of the EA1 algorithm, ωÅ

i , is indeed
from Q

.∆ti,xi−1,xi/
θ . The posterior density of interest, π.θ|v/, is a marginal of the joint posterior

density of θ and the latent variables, π.θ, {ωÅ
i , ΦÅ

i , 1 � i�n}|v/. We aim at sampling from this
density via the Gibbs sampler. The conditional density of the latent variables is

π.{ωÅ
i , ΦÅ

i , 1� i�n}|θ, v/=
n∏

i=1
π{ωÅ

i , ΦÅ
i |θ, xi−1.θ/, xi.θ/}; .29/

thus the pairs .ωÅ
i , ΦÅ

i / are conditionally independent with density given in expression (26). The
key property of this hierarchical simulation model is that θ is independent of {.ωÅ

i , ΦÅ
i /, 1� i�n}

given the collection of skeletons {S.ωÅ
i /, 1� i�n}. Specifically, the conditional density of θ given

the observed data and the latent variables is given in the following theorem.

Theorem 3. θ is conditionally independent of {.ωÅ
i , ΦÅ

i /, 1 � i � n} given v and {S.ωÅ
i /, 1 �

i�n}, with density π.θ|{S.ωÅ
i /, 1� i�n}, v/ proportional to

π.θ/ r.θ/
n∑

i=1
κÅ

i exp
[
A{xn.θ/; θ}−A{x0.θ/; θ}−{l.θ/+ r.θ/}

n∑
i=1

∆ti

]

×
n∏

i=1
|η′{xi.θ/; θ}|N∆ti{xi.θ/−xi−1.θ/}

×
n∏

i=1

( κÅ
i∏

j=1

[
1−φ

{
ωÅ

i,ψÅ
i,j

+ .1−ψÅ
i,j=∆ti/ xi−1.θ/+ .ψÅ

i,j=∆ti/ xi.θ/; θ
}])

, θ∈Θ:

.30/
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Note that expression (30) is given in a simple computable form, and the intractable terms
a.xi−1, xi, θ/ are not involved when conditioning on {S.ωÅ

i /, 1 � i�n}. Our proposed MCMC
algorithm is a componentwise updating algorithm, simulating iteratively the skeletons {S.ωÅ

i /,
1� i�n} and θ from their posterior conditional distributions. The skeletons {S.ωÅ

i /, 1� i�n}
are conditionally independent given θ and can be easily simulated by using the EA1 algorithm.
In some cases it might be possible to sample from density (30) directly; otherwise a Metropolis–
Hastings step could be used. When a random-walk Metropolis algorithm is being used, it will
generally make sense to scale the proposal variance to be proportional to n−1.

9.1. Example: periodic drift
We implemented the algorithm for the SINE data set. We used a uniform prior on [0, 2π]. It took
47 s to run the algorithm for 10000 iterations, and some summaries are shown in the rightmost
column of Fig. 4. The posterior mean is estimated as 3.1127 and the posterior standard devi-
ation as 0.04. We used a Metropolis step to update θ, which had acceptance probability 0.49.
The algorithm mixes very rapidly, and essentially the autocorrelation in the θ-series is because
a Metropolis step is used rather than direct simulation from its conditional distribution. The
dependence between θ and the latent variables is very weak.

When the assumed model is in D2, the construction of the MCMC algorithm is more com-
plicated. In particular, derivation of the joint density of .θ,ωÅ, ΦÅ/ is challenging owing to
the more complex structure of the EA2 algorithm. This is done in Beskos et al. (2004b),
where also other important issues related to the implementation of the MCMC algorithm
are tackled. The algorithm necessitates recent non-centring reparameterization methodology
for hierarchical models as described in Roberts et al. (2004) and Papaspiliopoulos et al.
(2003).

9.2. Example: logistic growth
Using the MCMC algorithm that is described in Beskos et al. (2004b), we obtained 50000 sam-
ples from the posterior distribution of the parameters .R, Λ,σ/ for the LOG-GROWTH data
set. The computing time was 20 min, and a summary of the results is given in Fig. 4. The posterior
means were estimated as (0.1075, 1017.4, 0.1007) and the posterior precision matrix as(4589 0:065 −9408

0:001 0:116
196060

)

from which the posterior standard deviations read as (0.015, 31.13, 0.002).

10. Conclusions

In this paper we have introduced a variety of methods which can be used for likelihood-based
inference for discretely observed diffusions. The methods rely on recent advances in the exact
simulation of diffusions. The computational efficiency of the methods was illustrated in a collec-
tion of examples. However, an exhaustive simulation study which tests the relative performance
of our methods and existing approaches, under various model specifications and parameter
settings, is not given here. Such a detailed empirical investigation is currently taking place.
However, some qualitative remarks are made below.

In general, the computing time that is required for our methods critically depends on the rate
of the Poisson process. Ceteris paribus, this rate is a function of the time increment ∆t between
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the observations. The performance (measured either in computing time or MC error) of our
methods will be very strong for small ∆t (high frequency data). However, the performance of the
methods as presented here deteriorates for sparser data sets (∆t large). Specifically, the problem
stems from the following two characteristics of the conditional EA:

(a) the Poisson rate is linear in ∆t (in EA2 it can increase even faster);
(b) the acceptance rate typically decreases exponentially to 0 in ∆t.

The computing time that is required for the AM and SAM increases because of (a) and for the
MCEM and MCMC algorithms because of (a) and (b). In the AM and SAM, the variance will
also increase with ∆t, since MC averages would be heavily dominated by the terms (of very small
probability) corresponding to Poisson configurations with very few points. Similarly, expres-
sion (20) suggests that the variance of the Poisson estimator increases exponentially with ∆t. In
MCMC sampling, the computing cost can be transformed to be linear in ∆t. This is achieved
by augmenting any two observed data with additional points in between. This is implemented
by applying the conditional EA on intervals of length a fraction of ∆t. Of course, the additional
augmentation will affect the MCMC mixing.

Some extensions of our methodology are possible. One important direction is the extension
of our methods for diffusions outside the D2-class. As we have shown, the Poisson estimator can
be readily used for likelihood inference for more general diffusion processes. However, current
progress on the EA itself, which attempts to remove the boundedness conditions on the drift
(Beskos et al. 2005a), is expected to broaden the applicability of the estimation methods. It is
worth noting that MCEM and the AM remain unaltered irrespective of which version of the
EA is being used; thus they can readily accommodate extensions in the EA. The other methods
use explicitly the structure of the EA and will have to be modified appropriately.

We have concentrated here on the case where the diffusion is observed without error at a
finite set of times. However, data often occur in different forms. For instance, data might be
subject to observation error. All the methods for evaluating MLEs are difficult to extend to
this case. However, the MCMC approach can be extended in a straightforward manner. An
alternative interesting data form is when we observe a one-dimensional component of a higher
dimensional diffusion, as for instance in continuous time filtering models. We are currently
working on a collection of such filtering problems, and we have found that our methods can
be extended to this case, although there are significant additional implementation challenges in
this approach.

Our methodology extends some way to time inhomogeneous and multivariate diffusions. In
carrying out these extensions, there are two steps in the arguments that are used in this paper
that need to be generalized. Firstly, it is necessary to generalize the transformation (3) which
eliminates the diffusion coefficient. This is straightforward under mild smoothness conditions on
σ in the time inhomogeneous extension. For multivariate extensions, however, the generalized
version of transformation (3) involves the solution of an appropriate vector differential equa-
tion which is often intractable or insolvable (see for example Aït-Sahalia (2004)). This imposes
restrictions on the class of multivariate diffusions to which the methods that are presented here
can currently be applied. Secondly, we need to eliminate the stochastic integral from Girsanov’s
formula (32) to derive lemma 1. Again this is fairly routine in the time inhomogeneous case,
whereas an extra condition is needed in the multivariate case, requiring that the multivariate
drift be the gradient of a suitable potential function. This is a well-known condition in stochastic
analysis and for ergodic, unit diffusion coefficient diffusions corresponds to reversibility.

It is natural to ask whether the ideas of this paper extend to SDEs that are driven by Lévy pro-
cesses. However, the Cameron–Martin–Girsanov formula, providing a closed form likelihood
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function, is critical to all our methodology. Unfortunately, there is not an analogous expression
for the Radon–Nikodym derivative of an infinite activity Lévy-driven SDE with respect to a
measure that is tractable and easy to simulate from. Nevertheless, it is straightforward to extend
our methods to incorporate SDEs with jumps according to a finite activity Lévy process (as for
example considered in Roberts et al. (2004)).

We hope that the collection of techniques that are described in this paper will have further
applications. We are currently working on MC estimation of derivative hedge ratios in finance.
The methodology builds on Rao–Blackwellization techniques such as those devised for the
bridge method.

Although we recognize that the mathematical details of this work are complex for those
without a working knowledge of diffusion theory, we firmly believe that our methods have the
potential to influence applied statistical work. This is because the algorithms that we use are
relatively simple and easy to code, and the methods are not computationally demanding and
are capable of handling long time series. In addition, motivated by the desire to make our work
as accessible as possible, we have started to develop generic software for the implementation of
some of our methods, beginning with the EA.
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Appendix A: Background material

A.1. Brownian motion and Brownian bridge
Standard Brownian motion {Bs; 0 � s � t}, B0 = 0, can be simulated on a collection of time instances
0= s0 <s1 < . . . <sk � t in the following recursive way:

Bsj
=Bsj−1 +Yj , Yj ∼N.0, sj − sj−1/, 1� j �k:

A standard BB with distribution W.t,0,0/ can be obtained as a transformation of B:

Bs − s

t
Bt , s∈ [0, t]:

An arbitrary BB with distribution W.t,x,y/ can be simulated via the relocation invariance property of BBs: if
ω∼W.t,0,0/, then ωs + .1− s=t/x+ .s=t/y is a path from W.t,x,y/.

A.2. Decomposition of a Brownian path at its minimum
The following theorem, which was stated in Beskos et al. (2004a), shows how to simulate a BB path together
with its minimum m and the time τ when the minimum is attained.

Theorem 4. A path ω∼W.t,x,y/ can be simulated in the following way.

Step 1: simulate m and τ according to their joint density

π.m, τ /=√
.2πt/

.y −m/.x−m/√{τ 3.t − τ /3} exp
{

− .x−m/2

2τ
− .y −m/2

2.t − τ /
+ .y −x/2

2t

}
, .31/

for m�min.x, y/ and τ ∈ [0, t].
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Step 2: the rest of the path is a transformation of six independent standard BBs, bj ∼W.1,0,0/, j =1, . . . , 6.
Analytically, for 0� s� τ ,

ωs =m+√
τ

√[{
.x−m/.τ − s/

τ 3=2
+b1,.1−s=τ /

}2

+b2
2,.1−s=τ / +b2

3,.1−s=τ /

]
,

and, for τ <s� t,

ωs =m+√
.t − τ /

√[{
.y −m/.s− τ /

.t − τ /3=2
+b4,.s−τ /=.t−τ /

}2

+b2
5,.s−τ /=.t−τ / +b2

6,.s−τ /=.t−τ /

]
:

In step 1, m is drawn from its marginal distribution, which is a transformed Rayleigh distribution and,
conditionally on m, τ is drawn by using the inverse cumulative distribution function method.

A.3. Bessel process and Bessel bridge
The (three-dimensional) Bessel process or bridge can be defined as a scalar Brownian motion or bridge
that is constrained to be positive; for the main results see chapter 11 of Revuz and Yor (1994). Recall that
an arbitrary Bessel bridge measure is denoted by R.t,x,y/. Simulation of ω∼ R.t,0,y/ can be carried out by
means of three independent BBs (see for example Bertoin and Pitman (1994)):

ωs =√{.ys+b1,s/
2 +b2

2,s +b2
3,s}, 0� s� t, bj ∼W.t,0,0/:

Simulation ofω∼R.t,x,y/ is more involved and follows the lines of theorem 4. We first simulate its minimum
m, whose distribution is the restriction on .0, ∞/ of the distribution of the minimum of the corresponding
BB. Given m, the path can be reconstructed exactly as if it were a BB with known minimum m.

Appendix B: Proofs of main results

B.1. Proof of lemma 1
Girsanov’s formula, which gives the density of the law of X with respect to Wiener measure, is

exp
{∫ t

0
α.ωs; θ/ dωs − 1

2

∫ t

0
α2.ωs; θ/ ds

}
: .32/

Thus, using Itô’s lemma

dQ
.t,x,y/
θ

dW.t,x,y/
.ω/= Nt .y −x/

p̃t.x, y; θ/
exp

{∫ t

0
α.ωs; θ/ dωs − 1

2

∫ t

0
α2.ωs; θ/ ds

}

= Nt .y −x/

p̃t.x, y; θ/
exp

{
A.y; θ/−A.x; θ/−

∫ t

0

1
2

.α2 +α′/.ωs; θ/ ds

}
:

B.2. Proof of lemma 2
We shall find the density π.Vt , Ẋ|θ/ of the law of vcom with respect to Leb×W.t,0,0/, where Leb denotes the
Lebesgue measure on R. Clearly,

π.Vt , Ẋ|θ/=pt.V0, Vt ; θ/π.Ẋ|Vt , θ/:

The law of the 1–1 transformation gθ.Ẋ/ given Vt is just Q
.t,x,y/
θ , where x=η.V0; θ/ and y =η.Vt ; θ/. Thus,

π.Ẋ|Vt , θ/= dQ
.t,x,y/
θ

dW.t,x,y/
gθ.Ẋ/:

Use of lemma 1 concludes the proof.

B.3. Proof of lemma 3
Note that the Radon–Nikodym derivative of a homogeneous Poisson process with rate r.θ/ on [0, t]× [0, 1]
with respect to Φ is
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exp{−r.θ/t} r.θ/κtκ

κ!

{
exp.−t/

tκ

κ!

}−1

,

which simplifies to exp[t{1− r.θ/}]r.θ/κ.

B.4. Proof of theorem 3
The joint density of θ and the latent variables conditionally on v can be decomposed as

π.θ, {ωÅ
i , ΦÅ

i , 1� i�n}|v/=π.θ|v/π.{ωÅ
i , ΦÅ

i , 1� i�n}|θ, v/:

To simplify the formulae, we write xi instead of xi.θ/. Clearly,

π.θ|v/∝π.θ/
n∏

i=1
p̃∆ti

.xi−1, xi; θ/|η′.xi; θ/|:

Using equation (14), the acceptance probability of EA1 a.xi−1, xi, θ/ can be expressed as

p̃∆ti
.xi−1, xi; θ/ [N∆ti .xi −xi−1/ exp{A.xi; θ/−A.xi−1; θ/− l.θ/∆ti}]−1:

Combining this expression with expressions (29) and (26) we find that π.θ, {ωÅ
i , ΦÅ

i , 1 � i � n}|v/ is pro-
portional to

π.θ/ r.θ/
∑
κÅ

i exp
[
A.xn; θ/−A.x0; θ/−{l.θ/+ r.θ/}

n∑
i=1

∆ti

]
n∏

i=1
|η′.xi; θ/|N∆ti .xi −xi−1/

×
n∏

i=1

( κÅ
i∏

j=1
I
[
φ
{
ωÅ

i,ψÅ
i,j

+ .1−ψÅ
i,j=∆ti/xi−1 + .ψÅ

i,j=∆ti/xi; θ
}

<υÅ
i,j

])
:

It is now straightforward to integrate out ΥÅ
i ={υi,j , 1� j �κÅ

i } and to obtain expression (30).

References

Aït-Sahalia, Y. (1996) Testing continuous-time models of the spot interest rate. Rev. Finan. Stud., 9, 385–426.
Aït-Sahalia, Y. (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approxi-

mation approach. Econometrica, 70, 223–262.
Aït-Sahalia, Y. (2004) Closed-form likelihood expansions for multivariate diffusions. Working Paper. Princeton

University, Princeton. (Available from http://www.princeton.edu/∼yacine/research.htm.)
Asmussen, S., Glynn, P. and Pitman, J. (1995) Discretization error in simulation of one-dimensional reflecting

Brownian motion. Ann. Appl. Probab., 5, 875–896.
Barndorff-Nielsen, O. E. and Shephard, N. (2002) Econometric analysis of realized volatility and its use in esti-

mating stochastic volatility models. J. R. Statist. Soc. B, 64, 253–280.
Bertoin, J. and Pitman, J. (1994) Path transformations connecting Brownian bridge, excursion and meander. Bull.

Sci. Math., 118, 147–166.
Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2004a) Retrospective exact simulation of diffusion

sample paths with applications. To be published. (Available from http://www.maths.lancs.ac.uk/
∼papaspil/research.html.)

Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2004b) Markov chain Monte Carlo for exact inference for
discretely observed diffusions. To be published.

Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2005a) A new factorisation of diffusion measure with view
towards simulation. To be published.

Beskos, A., Papaspiliopoulos, O. and Roberts, G. O. (2005b) Monte carlo maximum likelihood estimation for
discretely observed diffusion processes. To be published.

Beskos, A. and Roberts, G. O. (2005) Exact simulation of diffusions. Ann. Appl. Probab., 15, in the press.
Bibby, B. M., Jacobsen, M. and Sørensen, M. (2002) Estimating functions for discretely sampled diffusion-type

models. In Handbook of Financial Econometrics (eds Y. Aït Sahalia and L. P. Hansen). Amsterdam: North-
Holland.

Black, F. and Scholes, M. S. (1973) The pricing of options and corporate liabilities. J. Polit. Econ., 81, 637–659.
Chan, K., Karolyi, A. G., Longstaff, F. A. and Sanders, A. B. (1992) An empirical comparison of alternative

models of the short-term interest rate. J. Finan., 47, 1209–1227.
Chan, K. S. and Ledolter, J. (1995) Monte Carlo EM estimation for time series models involving counts. J. Am.

Statist. Ass., 90, 242–252.



360 A. Beskos, O. Papaspiliopoulos, G. O. Roberts and P. Fearnhead

Cox, J. C., Ingersoll, Jr, J. E. and Ross, S. A. (1985) A theory of the term structure of interest rates. Econometrica,
53, 385–407.

Dacunha-Castelle, D. and Florens-Zmirou, D. (1986) Estimation of the coefficients of a diffusion from discrete
observations. Stochastics, 19, 263–284.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM
algorithm (with discussion). J. R. Statist. Soc. B, 39, 1–38.

Durham, G. B. and Gallant, A. R. (2002) Numerical techniques for maximum likelihood estimation of continu-
ous-time diffusion processes (with discussion). J. Bus. Econ. Statist., 20, 297–338.

Elerian, O. (1999) Simulation estimation of continuous time series models with applications to finance. PhD
Thesis. Nuffield College, Oxford.

Elerian, O., Chib, S. and Shephard, N. (2001) Likelihood inference for discretely observed nonlinear diffusions.
Econometrica, 69, 959–993.

Eraker, B. (2001) MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Statist., 19,
177–191.

Fort, G. and Moulines, E. (2003) Convergence of the Monte Carlo expectation maximization for curved expo-
nential families. Ann. Statist., 31, 1220–1259.

Gallant, A. R. and Long, J. R. (1997) Estimating stochastic differential equations efficiently by minimum chi-
squared. Biometrika, 84, 125–141.

Gillespie, D. T. (1976) A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions. J. Computnl Phys., 22, 403–434.

Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361.
Gobet, E. (2002) LAN property for ergodic diffusions with discrete observations. Ann. Inst. H. Poincaré Probab.

Statist., 38, 711–737.
Goel, N. S. and Richter-Dyn, N. (1974) Stochastic Models in Biology. New York: Academic Press.
Gourieroux, C. and Jasiak, J. (2003) Multivariate Jacobi process and smooth transitions with applications.

J. Econ., to be published.
Gourieroux, C., Monfort, A. and Renault, E. (1993) Indirect inference. J. Appl. Econometr., 8, 85–118.
Jamshidian, M. and Jennrich, R. I. (2000) Standard errors for EM estimation. J. R. Statist. Soc. B, 62, 257–

270.
Kessler, M. (1997) Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist., 24, 211–

229.
Kimura, M. and Ohta, T. (1971) Theoretical Aspects of Population Genetics. Princeton: Princeton University Press.
Kingman, J. F. C. (1993) Poisson Processes. Oxford: Clarendon.
Kloeden, P. and Platen, E. (1995) Numerical Solution of Stochastic Differential Equations. New York: Springer.
Louis, T. A. (1982) Finding the observed information matrix when using the EM algorithm. J. R. Statist. Soc. B,

44, 226–233.
McAdams, H. and Arkin, A. (1997) Stochastic mechanisms in gene expression. Proc. Natn. Acad. Sci. USA, 94,

814–819.
Meng, X.-L. and Rubin, D. B. (1991) Using EM to obtain asymptotic variance-covariance matrices: the SEM

algorithm. J. Am. Statist. Ass., 86, 899–909.
Merton, R. C. (1971) Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory, 3,

373–413.
Obuhov, A. M. (1959) Description of turbulence in terms of Lagrangian variables. In Advances in Geophysics,

vol. 6, pp. 113–116. New York: Academic Press.
Papaspiliopoulos, O. and Roberts, G. O. (2004) Retrospective MCMC methods for Dirichlet process hierarchical

models. To be published.
Papaspiliopoulos, O., Roberts, G. O. and Sköld, M. (2003) Non-centered parameterizations for hierarchical

models and data augmentation (with discussion). In Bayesian Statistics 7 (eds J. M. Bernardo, M. S. Bayarri,
J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West), pp. 307–326. New York: Oxford
University Press.

Pardoux, É. and Pignol, M. (1984) Étude de la stabilité de la solution d’une EDS bilinéaire à coefficients périod-
iques: application au mouvement des pales d’hélicoptère. Lect. Notes Control Inform. Sci., 63, 92–103.

Pedersen, A. R. (1995) Consistency and asymptotic normality of an approximate maximum likelihood estimator
for discretely observed diffusion processes. Bernoulli, 1, 257–279.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992) Numerical Recipes in C: the Art of
Scientific Computing, 2nd edn. Cambridge: Cambridge University Press.

Revuz, D. and Yor, M. (1994) Continuous Martingales and Brownian Motion, 2nd edn. Berlin: Springer.
Roberts, G. O., Papaspiliopoulos, O. and Dellaportas, P. (2004) Bayesian inference for non-Gaussian Ornstein–

Uhlenbeck stochastic volatility processes. J. R. Statist. Soc. B, 66, 369–393.
Roberts, G. O. and Stramer, O. (2001) On inference for partially observed nonlinear diffusion models using the

Metropolis-Hastings algorithm. Biometrika, 88, 603–621.
Santa-Clara, P. (1995) Simulated likelihood estimation of diffusions with an application to the short-term interest

rate. Working Paper. National Bureau of Economic Research, Cambridge.



Discussion on the Paper by Beskos, Papaspiliopoulos, Roberts and Fearnhead 361

Sherman, R. P., Ho, Y.-Y. K. and Dalal, S. R. (1999) Conditions for convergence of Monte Carlo EM sequences
with an application to product diffusion modeling. Econ. J., 2, 248–267.

Shiga, T. (1985) Mathematical results on the stepping stone model in population genetics. In Population Genetics
and Molecular Evolution, pp. 267–279. Tokyo: Japan Scientific Society Press.

Sørensen, H. (2004) Parametric inference for diffusion processes observed at discrete points in time: a survey.
Int. Statist. Rev., 72, 337–354.

Wagner, W. (1988a) Unbiased multi-step estimators for the Monte Carlo evaluation of certain functional integrals.
J. Computnl Phys., 79, 336–352.

Wagner, W. (1988b) Monte Carlo evaluation of functionals of solutions of stochastic differential equations:
variance reduction and numerical examples. Stochast. Anal. Appl., 6, 447–468.

Wagner, W. (1989) Unbiased Monte Carlo estimators for functionals of weak solutions of stochastic differential
equations. Stochast. Stochast. Rep., 28, 1–20.

Wei, G. C. G. and Tanner, M. A. (1990) A Monte Carlo implementation of the EM algorithm and the poor man’s
data augmentation algorithms. J. Am. Statist. Ass., 85, 699–704.

Discussion on the paper by Beskos, Papaspiliopoulos, Roberts and Fearnhead

Eric Moulines (Ecole Nationale Supérieure des Télécommunications, Paris)
The problem of estimation and inference for discretely observed diffusion has been studied extensively
in recent years. The classical approach to the problem is based on a first-order approximation. In many
applications, this approximation is not sufficiently accurate for sampling instants at which data are avail-
able. This paper belongs to the class of Monte Carlo maximum likelihood methods which was introduced
by Pedersen (1995) and later considerably refined by many researchers.

Suppose that we wish to approximate the transition density of the diffusion over an interval. The first-
order approximation is accurate if this interval is sufficiently short. If this is not so, we may partition the
interval by introducing fictitious observations in such a way that the first-order approximation is sufficiently
accurate on each subinterval. These fictitious points are then marginalized. This is most often carried out
by using importance sampling techniques, much of the effort being spent on the design of an appropri-
ate proposal distribution (see for instance Elerian et al. (2001) and the references therein). Although this
approach can come arbitrarily close to the true transition density, its implementation remains computa-
tionally cumbersome.

The present paper takes a different direction. There are two main contributions in it. First, the authors
propose an exact algorithm to sample trajectories of non-linear diffusion. Using the exact algorithm they
propose several novel Monte Carlo estimators of the likelihood functions. These methods are extremely
ingenious and have considerable appeal; however, they are still limited in scope, because the exact algo-
rithm is available only under restrictive conditions on the drift terms of an appropriately transformed
version of the diffusion. Second, the authors propose a novel estimator of the likelihood function which
replaces the discretization and importance sampling estimates by a clever Poisson approximation. This
method can be applied to a much wider class of diffusions, alleviating some of the problems that are
linked to the discretization issue (see the discussion below). These are both potentially very useful pieces
of practical statistical methodology and the authors are to be congratulated for these findings. I would like
to raise two points.

(a) My first question concerns the potential benefits of the Poisson approximation compared with the
classical importance sampling estimator. The transition density of the diffusion

dXs =α.Xs; θ/ ds+dBs

may be expressed as

p̃t.x, y; θ/=Nt .y −x/ EW.t, x,y/

[
exp

{
A.y; θ/−A.x; θ/−

∫ t

0

1
2 .α2 +α′/.ωs; θ/ ds

}]

=Nt .y −x/ EW.t, x,y/

[
exp

{∫ t

0
α.ωs; θ/ dωs − 1

2

∫ t

0
α2.ωs; θ/ ds

}]

where A.u; θ/=∫ u
α.s; θ/ ds and W.t,x,y/ denotes the probability of a Brownian bridge pinned at x and

y. This estimator immediately suggests a ‘plain’ Monte Carlo estimator of the transition density,

p̂t.x, y; θ/= Nt .y −x/

K

K∑
k=1

exp
{∫ t

0
α.ω.k/

s ; θ/ dω.k/
s − 1

2

∫ t

0
α2.ω.k/

s ; θ/ ds

}
,
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where ω.k/ ∼ W.t,x,y/. Of course this estimator cannot be computed. The classical approach is to
approximate the inner integral by Riemann sums.

Despite their appearance, the Poisson estimator shares similarities with the Riemann approxi-
mation, with the inverse of the intensity λ−1 (the mean distance between two successive samples)
playing a role that is similar to the discretization interval δ. It would be of interest to understand
why, for the same average number of samples .δ=1=λ/, the Poisson approximation should dominate
the ‘natural’ Riemann estimator (at least in the asymptotic regime when δ→0 and λ→∞).

(b) My second question deals with the Monte Carlo EM algorithm. I focus here on the case where the
diffusion term does not depend on the parameter for simplicity. When using the Monte Carlo EM
algorithm, we must estimate conditional expectations

E
Q

.t, x,y/

θ′

{∫ t

0
f.Xs; θ/ ds

}
,

f.x; θ/= 1
2 {α2.x; θ/+α′.x; θ/},

where Q
.t,x,y/

θ′ denotes the distribution of the process conditioned to start at X0 =x and to finish at
Xt =y. We may estimate these quantities by using a plain Monte Carlo technique, but this supposes
that we may obtain exact samples from Q

.t,x,y/

θ′ , which is not always possible. Moreover, this is
presumably not a very clever choice from the computational point of view. Assume that we are will-
ing to estimate

∫
Φ.x/π.dx/. If the samples for π are generated from an instrumental distribution

q by using the accept–reject algorithm, then after K draws from the instrumental distribution the
Monte Carlo estimate is given by

K∑
k=1

1{Uk�π.ξk/=Mq.ξk/}
K∑

l=1
1{Ul�π.ξl /=q.ξl /}

Φ.ξk/, ξk ∼q, Uk ∼U[0, 1],

where M is some constant satisfying M q.x/ >π.x/ for all x. It is in general more sensible to use an
importance sampling estimator,

K∑
k=1

π.ξk/=q.ξk/
K∑

l=1
π.ξl/=q.ξl/

Φ.ξk/:

As suggested by Gelman (1995) and Quintana et al. (1999), nothing prevents us from approximating
the intermediate quantities in the Monte Carlo EM algorithm by using the importance sampling
estimator. The situation is more complicated here, because the importance weights and the func-
tion Φ cannot be computed exactly. Indeed, if the Brownian bridge is chosen to be the importance
distribution, the importance sampling estimate of E

Q
.t, x,y/

θ′
{∫ t

0 f.Xs; θ/ ds} takes the form

K∑
k=1

∫ t

0
f.ω.k/

s ; θ/ ds

exp
{∫ t

0
f.ω.k/

s / ds

}

K∑
l=1

exp
{∫ t

0
f.ω.k/

s / ds

} ,

which involves integrals. Nevertheless, this expression can be approximated numerically by replacing
integrals by Riemann sums or by the Poisson approximation. It would be of interest to compare
these two approaches.

As with any good paper read to the Society, this one contains much interesting material, both on the
theoretical foundations of the methodology and on numerous aspects of practical applications. There is still
much work to be done, but plenty has already been done by Alexandros Beskos, Omiros Papaspiliopoulos,
Gareth Roberts and Paul Fearnhead. It gives me great pleasure to propose a vote of thanks.

Dan Crisan (Imperial College London)
The paper extends classical results related to exact simulations of random variables to an infinite dimen-
sional set-up. Here random processes, in particular, solutions of one-dimensional stochastic differential
equations, are exactly sampled and various maximum likelihood and Bayesian inference methods are
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developed on the basis of the two versions EA1 and EA2 of the exact sampling algorithms.
It is very easy to obtain a sample path from a Brownian motion or from its conditioned version, the

Brownian bridge. This observation is the basis of the exact simulation of diffusions: if a diffusion X has
an absolutely continuous distribution with respect to that of a Brownian motion or a Brownian bridge,
then the retrospective sampling method that was developed by Papaspiliopoulos and Roberts can generate
an exact simulation of X by using the perfect Brownian sampling.

Unfortunately the class of one-dimensional stochastic differential equations with solutions that are abso-
lutely continuous with respect to a Brownian motion is very small. In effect we can only have equations
of the form

dXt =α.Xt/ dt +dBt:

(I shall not make explicit the coefficients’ dependence of the unknown parameter θ as it is not relevant to
the arguments that are presented.) X is simply a Brownian motion plus a drift term. This stems from the
fact that the Brownian path t →Bt has quadratic variation 〈B〉t = t and X must have the same property if
it wants to have an absolute continuous distribution with respect to that of B. In what follows I shall call
these processes B-diffusions.

The methods that are presented in the paper are applicable to a larger class of processes. Under additional
assumptions, all diffusions that can be reduced to a B-diffusion via a suitable change of space co-ordinates
can be simulated exactly. These are the diffusions V for which there is a diffeomorphism η : R → R such
that η.V/ is a B-diffusion. From a pathwise perspective, the change of co-ordinates amounts to stretching
or squashing the paths so that they obtain the right quadratic variation. This can be done, more often
than not, at the expense of ending up with unbounded or, even worse, exploding drifts α. As a result, the
simulation procedures and the inference methodology become either more difficult or not possible at all.

It is far more natural to start with a diffusion X that has an explicit distribution and the same quadratic
variation structure as V and then to check whether it has an absolutely continuous distribution with respect
to that of V . There is a generic method that finds such diffusions X and it stems from a classical result by
Doss (1977) and Sussmann (1978). The result states that, if b is Lipschitz continuous and that σ is twice
differentiable with bounded first and second derivatives, then the one-dimensional stochastic differential
equation

dVt =b.Vt/ dt +σ.Vt/ dBt

has a unique strong solution which can be written in the form

Vt.ω/=u{Bt.ω/, Yt.ω/}, t �0, ω∈Ω,

where u : R2 →R is the solution of the ordinary differential equation

@u

@x
=σ.u/,

u.0, y/=y
.33/

and the function t →Yt.ω/ solves an ordinary differential equation for every ω∈Ω. However, if we choose
a deterministic or a constant Y , the resulting process

Xt.ω/=u{Bt.ω/, Yt}, t �0, ω∈Ω,

will satisfy the equation

dXt =b dt +σ.Xt/ dBt

where

b̄= 1
2 σ.Xt/σ

′.Xt/+ @u

@y
.Bt , Yt/

dYt

dt−
:

In particular, if Y is constant, then

Xt =x+ 1
2

∫ t

0
σ.Xs/σ

′.Xs/ dt +
∫ t

0
σ.Xs/ dBs

=x+
∫ t

0
σ.Xs/◦dBs,
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where the last integral is a Stratonovitch integral. Applying this strategy to the logistic growth model (the
second example in the paper), the corresponding process X can be chosen to be the log-normal diffusion

dXt =RXt dt +σXt dBt ,

with the explicit solution

Xt =x exp{σBt + t.R−σ2=2/}:

The density of the (unconditional) distribution of V with respect to the distribution of X (on the path
space) will then be proportional to

exp
[
−d

{
X2

t .ω/−x2 + t

2

}
− d2

2

∫ t

0
X2

s .ω/ ds

]
, d = R

2σΛ
:

There are three apparent advantages of this method over the change of spatial co-ordinates approach:

(a) it applies to a wide class of sets of coefficients .b,σ/;
(b) it usually leads to simpler expressions for the Radon–Nikodym derivative, hence perhaps simplifying

the ensuing estimation procedures;
(c) it extends naturally to multivariate diffusions and time inhomogeneous diffusions. We need to con-

sider the multidimensional and, respectively, the time inhomogeneous version of expression (33).

For the Cox–Ingersoll–Ross model (the third example in the paper) though, the resulting process X is
not absolutely continuous with respect to V . However, in the same vein, the Cox–Ingersoll–Ross diffusion
is absolutely continuous with respect to the squared Bessel process

dXt = δ dt +2
√

Xt dBt:

I have two further comments on the paper. It would be desirable to see a theoretical analysis of the
computational effort that is involved for the various inference methods presented as a function of the
number of time instances when the data are acquired. Also no comparison or analogy is made between
the methods presented and the sequential Monte Carlo methods. However, the authors say that a com-
parison study between their methods and other existing methods is in progress.

In conclusion, the authors have already done a large amount of work on the subject, though I would
venture to say that there is still much to be done on this line of research and I look forward to seeing the
follow-ups. It gives me great pleasure in congratulating the authors on their paper and in seconding the
vote of thanks.

The vote of thanks was passed by acclamation.

Barry Rowlingson (Lancaster University)
We are developing a package for the R programming environment to follow the theoretical developments
that are described in the paper as well as to implement basic functionality for diffusion processes.

At present we can simulate a range of diffusion processes using the Euler method, and also we can use
the EA1 algorithm for those that can be simulated that way. Methods for plotting realizations of diffusion
processes have been implemented.

The code contains contributions from the paper’s authors as well as from Duncan Murdoch. Eventually
we hope to release the package into the CRAN archive of R packages, but for now it is available on request
from the authors of the paper. We welcome any offers of help in the development of this package.

N. Chopin (University of Bristol)
This is an impressive piece of work; the methodology is very elegant, and the range of applications is
promising. I shall raise three points.

(a) Given the first expression in lemma 1, the boundedness assumption on α2 +α′—condition (b) in
Section 2—is natural from a standard accept–reject perspective. One may naïvely remark, however,
that, during a small time interval [0, t], a Brownian bridge is confined to a small interval with very
high probability. Thus I wonder whether, in some specific settings (for instance when computing
the likelihood between two close observations x and y), an arbitrary truncation of function α, to
force condition (b), would not produce an acceptable bias. Would this be a reasonable way to extend
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slightly the class of diffusions that can be simulated from the simulation techniques that are presented
here?

(b) I believe that the methodology developed in this paper can also be used in sequential problems, and
within particle filtering algorithms. I shall not give exact details, for lack of space, but I shall illustrate
this point with a toy example: the sequential filtering of a diffusion with known parameters, but
observed at discrete times with noise. The simulation of the diffusion trajectory would then replace
the simulation of the hidden Markov chain in the standard case.

(c) The authors mention some shortcomings of Euler discretization schemes, and corresponding Mar-
kov chain Monte Carlo samplers: in particular, the trade-off between discretization bias (coarse
grids) and computational inefficiency (fine grids) is difficult to handle; ‘computational inefficiency’
refers here both to the cost of each iteration and to the number of iterations that are required to
reach convergence.

I wonder whether this trade-off could not be dealt with in an automatic fashion through some adap-
tive algorithm. Consider some sequence pn of posterior distributions (of parameters and imputed values)
corresponding to a decreasing sequence of discretization steps ∆n, and apply a sequential Monte Carlo
algorithm to this artificial sequence. It then seems possible to design some stopping rule that detects when
the discretization bias has become small, relatively to the Monte Carlo error. This alternative approach
may be useful for cases where the Markov chain Monte Carlo algorithm that is developed in this paper
cannot be applied.

S. B. Connor and W. S. Kendall (University of Warwick, Coventry)
We enjoyed and are greatly impressed by the elegance of this exact simulation method. This is one of an
increasing number of simulation options which involve striking applications of probabilistic ideas. We take
the opportunity here to sketch some recent work on another such option, that of coupling from the past
(CFTP). It is natural to wonder whether these ideas might connect together in productive and useful ways.

CFTP was first introduced by Propp and Wilson (1996) as a method for sampling from the exact sta-
tionary distribution of an ergodic Markov chain. However, as shown by Foss and Tweedie (1998), this
algorithm is possible (in an impractical sense) if and only if the Markov chain is uniformly ergodic. More
recently, Kendall (2004) showed that all geometrically ergodic chains have (again impractical) dominated
CFTP algorithms (as introduced in Kendall (1998)). This poses the question: what about when the chain
X is polynomially ergodic?

We are currently investigating conditions under which a dominated CFTP algorithm exists for a poly-
nomially ergodic chain X. Specifically, we consider chains for which there are constants α∈ .0, 1/ and
b, c∈ .0, ∞/, a small set C and a scale function V :X → [1, ∞/, bounded on C, such that

E{V.Xn+1/|Xn =x}�V.x/− c V α.x/+b 1[Xn∈C]: .34/

This drift condition implies that the chain is polynomially ergodic, as shown in Jarner and Roberts (2002).
In Connor and Kendall (2006) we introduce the concept of a tame chain. A chain X satisfying the drift

condition (34) is tame if we can subsample X (in a specific, adaptive way) to produce a geometrically ergodic
chain X′. In this case we prove that we can produce a suitable dominating process for X by slowing down
the dominating process for X′ that is shown to exist in Kendall (2004).

Thus the question becomes: when is a polynomially ergodic chain tame? We have some sufficient con-
ditions for tameness, but also examples to show that none of these are necessary. It is unclear at present
whether all chains are tame, and this is an issue that we shall be investigating as part of our future research
in this area.

John T. Kent (University of Leeds)
Let me focus on the authors’ first model, which can be recast in the form

dXt =−λ sin.Xt −µ/ dt +σ dWt , λ> 0:

As a diffusion on the circle, it can be termed a ‘von Mises diffusion’ because in equilibrium it follows a
von Mises distribution, with probability density function proportional to exp{κ cos.x −µ/}, 0 � x < 2π,
κ=2λ=σ2 (e.g. Kent (1978)). It has some nice applications.

(a) Position model: imagine a liquid in a magnetic field containing tiny iron filings whose orientations
are subject to the same sorts of molecular bombardments that motivate the standard Brownian
motion model.
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(b) Velocity model: consider a moving bacterium with a preferential direction of motion. Suppose that
the magnitude of the velocity of the bacterium is constant (or at least the process for magnitude is
independent of orientation) and that the orientation of the velocity follows the von Mises diffusion
(Hill et al., 1997). The data consist of locations of the bacterium at regularly spaced times.

Several questions come to mind for the von Mises process and more generally.

(i) Can the methods of this paper be used for applications such as the bacterium example, where the
velocity follows a diffusion, but where the data are based on the integrated velocity?

(ii) Suppose that we wish to estimate µ for data from the von Mises process. The simplest statistical
approach is to compute the maximum likelihood estimate (MLE) by treating the data as indepen-
dent and identically distributed from a von Mises distribution. We might expect that this naïve MLE
will be close to the proper MLE, but that we shall underestimate the true variance of the estimator.
This latter problem might be overcome by allowing for the autocorrelation in the data. How does
this simple statistical approach compare with the proper analysis that is proposed in this paper?

(iii) The efficiency of the authors’ simulation technique presumably decreases as either of two quantities
increases: the time step δt=σ and the concentration parameter κ. Is this correct?

(iv) It is an elementary observation that the distribution of a Brownian bridge does not depend on the
presence of any (constant) drift in the underlying Brownian motion. Does this property help to
explain the unexpectedly high efficiency of the authors’ simulation techniques in general?

Bruno Casella (Università Bocconi, Milan, and Lancaster University)
I shall report on on-going research joint with Gareth Roberts that is strictly connected to the paper. In
the paper the exact algorithm is the key tool for the construction of an unbiased Monte Carlo estimator
of the transition densities to be used for inference on the parameters of the diffusion. The exact algorithm
framework can be successfully applied in many other Monte Carlo problems involving the simulation of
functionals ξ.·/ of diffusion processes. A natural area where these problems arise is option pricing.

Our main idea is the following. Given a process X = {Xt : 0 � t � T} ∈ D1 with starting-point x and
unknown probability measure Q, we simulate an exact skeleton

S1 ={.0, x/, .ψ1,ωψ1 /, . . . , .ψk,ωψk
/, .T ,ωT /}

by the (unconditional) EA1 algorithm. Given S1, Q is the product of independent Brownian bridges. Using
this characterization, we can simulate ξ conditionally on S1 exactly (i.e. without discretization error). We
named this methodology the exact Monte Carlo method. We applied the method to the problem of the
estimation of

ν=EQ{ξ.ω/|ω0 =x}
=EQ{g.ωT / I{τ<T} +h.ωT / I{τ�T}|ω0 =x}

where τ is the first exit time of ω from a set H := .a, b/ such that x ∈ .a, b/, and g.·/ and h.·/ are two
measurable functions. This problem is relevant in finance, e.g. in barrier options pricing or credit risk
modelling. First, we call algorithm EA1 and output S1. Given S1, all that we need for the simulative of
ξ is to sample the crossing event of a product of independent Brownian bridges. In the single-barrier case
.α=−∞ or b =∞/ we apply the well-known Bachelier–Levy theory which provides an explicit formula
for the one-sided crossing probability of a Brownian bridge. Notably, this also allows us to construct a
Rao–Blackwellized Monte Carlo estimator of ν, which is similar in spirit to the one that was used for
the bridge method, by sampling directly EQ.ξ|S1/ (Fig. 5). In the double-barrier case we do not have an
explicit formula for the (two-sided) crossing probability of a Brownian bridge: we circumvent the problem
by developing a suitable procedure to simulate from it. The procedure is based on Doob’s representation
of the crossing probability of the Brownian motion as a telescopic sum.

Simulation studies show that our estimator is

(a) unbiased—Euler-based estimators converge to our estimator as the length of the discretization
interval decreases—and

(b) efficient—for small discretization intervals, our estimator is more efficient than Euler’s.

Extensions of this methodology to processes X ∈ D2 and jump diffusion processes are possible. We are
currently working on the application of the exact Monte Carlo method to Monte Carlo estimation of
derivative hedge ratios in finance.

The following contributions were received in writing after the meeting.
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Fig. 5. Monte Carlo estimate of νD E.XT I{τ>T}/ where X is the SINE model (single-barrier case: x D 1:5;
a D �∞; b D 4:5; T D 5): (a) Monte Carlo convergence of the exact Monte Carlo estimator (not Rao–Black-
wellized and Rao–Blackwellized); (b) convergence of the estimators based on a discrete Euler scheme (ı)
and a continuous Euler scheme (+) to the exact Monte Carlo estimate (. . . . . . .), double-barrier case (x D 2;
a D 1; b D 4:5; T D 5); (c) Monte Carlo convergence of the exact Monte Carlo estimator; (d) convergence of
the estimators based on a discrete Euler scheme (ı) and a continuous Euler scheme (+) to the exact Monte
Carlo estimate (. . . . . . .)

Frank Ball, Ian Dryden and Mousa Golalizadeh (University of Nottingham)
We congratulate the authors for their inspirational paper. Our particular interest concerns extensions
of the retrospective exact simulation work to compact spaces. Ball et al. (2004) have considered Ornstein–
Uhlenbeck (OU) processes in Kendall’s (1984) shape space for k�3 points in two dimensions. In particular,
a family of OU processes has been defined with Itô stochastic differential equations for the Riemannian
shape distance ρt to a reference configuration at time t> 0 that is given by

dρt ={cot.2ρt /+ .k −3/ cot.ρt /−g′.ρt /}dt +dBt , 0�ρt �π=2,

where g′.ρ/=dg.ρ/=dρ is the infinitesimal OU drift term, Bt is standard Brownian motion on the real line
and the process starts at ρ0 at time t =0. In the case k =3 the planar shape space for triangles of points is
equivalent to a sphere of radius 1

2 in three dimensions, and ρt is the colatitude on this sphere.
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Since the diffusion process for ρt is restricted to the closed interval [0,π=2], simulation of the ρt-
process is challenging. For example the Euler scheme is problematic near the end points 0 or π=2 and
needs adaptation (see Ball et al. (2004)).

We are currently exploring the retrospective exact simulation methods of the present paper for simu-
lating ρt , and the methods need to cope with the facts that the domain is a closed interval, α2 +α′ is not
bounded below at π=2 and not bounded above at 0.

We have used an adaptation of algorithm EA2 for simulating ρt , where the decomposition is carried out
with respect to the minimum, as follows.

(a) The function α2 +α′ is replaced with a differentiable bounded function which is identical to α2 +α′

except in the intervals [0, "1/ and .π=2− "2,π=2], where "1, "2 > 0 are small.
(b) The time length T of a simulation is chosen such that the probability that the maximum is outside

the interval [0,π=2] is negligible. This is practical unless ρ0 is very close to π=2, in which case the
decomposition should be taken with respect to the maximum and the probability that the minimum
is outside the interval should be negligible.

(c) Additional criteria for rejecting a proposed path are if
(i) the simulated end point from density h in Section 2.3 is outside the interval [0,π=2] or
(ii) the simulated minimum m of the path is below zero.

Consider an example with g′.ρ/=κ sin.2ρ/. This process was introduced by Kent (1975) for the sphere
.k = 3/. We use the adapted retrospective exact simulation method for a single long run consisting of
100000 individual time steps of length T = 0:02, where the end point from one time step becomes the
start-point for the next step. In Fig. 6 we plot simulated values at unit intervals from the OU process,
and a histogram of the simulated values evaluated at time intervals of length 0.02 with the density of the
theoretical equilibrium distribution overlaid. The histogram and density are extremely similar, indicating
that approximations to retrospective exact sampling can also be useful in more general situations.
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Fig. 6. (a) Simulated points at unit time steps from the diffusion process for ρt with g0.ρ/Dκ sin.2ρ/, k D4,
κD 10 and ρ0 D 0:2 and (b) density scaled histogram of simulated points from the OU process at intervals
of 0.02, with the density of the theoretical equilibrium distribution f .ρ/∝sin2k�5.ρ/ cos.ρ/ exp{κ cos.2ρ/}
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N. H. Bingham (University of Sheffield)
I congratulate the authors on this interesting paper. I confine myself to a few comments on theoretical and
financial aspects.

Curse of dimensionality
The multidimensional extensions that are mentioned in the final section are intriguing from the point of
view of mathematical finance. There, by Markowitzian diversification, one holds a large number of assets;
the danger here is the curse of dimensionality. Methods are available to counter this which reduce the
effective dimensionality from the number or assets to the number of industrial sectors; see for example
Bingham et al. (2003).

Ensemble models
An alternative approach to estimating diffusion coefficients by discrete methods arises where we have
(or can obtain) an ensemble of paths, or diffusing particles say, rather than one. We can then extract
information from the counts of the number of diffusing particles in some window of observation, as a
function of time. The technique is called number fluctuation spectroscopy. It was used by Smoluchowski,
following Einstein’s work, to estimate Avogadro’s number, and by Rothschild to study mobility of sperma-
tozoa. For details and references, see for example Bingham and Dunham (1997) and Bingham and Pitts
(1998).

Drift and diffusion
As observed in Section 2, granted a sample path over a time interval of positive length, we can deter-
mine the diffusion coefficient with certainty (e.g. in the Brownian case from the quadratic variation). But
this involves (uncountably) infinite sample sizes, and we can obtain and handle only finite samples in
reality.

Nevertheless, the suggestion is that in principle we can discriminate between different diffusion coeffi-
cients with certainty; if both are the same, we can form likelihood ratios and, for example, test hypotheses
comparing the drifts.

Diffusions, or Itô processes, being locally Gaussian, relevant here is the split between mutual abso-
lute continuity and singularity of Gaussian processes, for which see for example Ibragimov and Rozanov
(1978), chapter III.

Splitting times
The use of random times such as when the minimum is (last) attained—which is far from being a stopping
time—to split the path into independent fragments is a powerful technique. Such times are called splitting
times; for general theory, see Rogers and Williams (1994), section III.49.

Multidimensional diffusions
The irreducibility condition that was used by Aït-Sahalia (2004) to reduce to the case of unit diffusion
coefficient predates the standard work on multidimensional diffusions by Stroock and Varadhan (1979)—
which does not contain it. It is good to see practice driving theory here.

Peter Clifford (Oxford University)
I have just a few comments on an enjoyable paper, Firstly note that the Cox–Ingersoll–Ross diffusion

dZt =p
√

Zt dBt + .qZt + r/ dt

is the square of an Ornstein–Uhlenbeck process in a specific dimension. The model is discussed in Karlin
and Taylor (1981), pages 333–334, where the transition density is given explicitly. The transitions of the
diffusion can be readily simulated by using the representation of a non-central χ2-distribution as a Poisson
mixture of gamma variates.

My second comment is more substantial. I am uneasy that a novel method of solving stochastic and
partial differential equations has not being rigorously compared with established methods in numerical
analytic terms. At the very least it would have been helpful to see additions to Fig. 1 in Aït-Sahalia (2002),
but ideally we should be given comparative analyses of the growth of error and the order of accuracy.

Finally, where can I see a real diffusion? Stock-market transactions and price movements, for example,
are essentially discrete. Perhaps it is better to think of diffusion as modelling latent sentiment, which is
continuously fluctuating but not directly observable. The observables are then driven by this underlying
process. A simple model is that market events (trades etc.) are a Poisson process with intensity that is
proportional to the diffusion. For the Cox–Ingersoll–Ross class of diffusions we have recently shown how
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to calculate likelihoods explicitly for such a doubly stochastic process. The method exploits the identity
between discrete processes of this type and the death epochs of the standard immigration, birth and death
process (Clifford and Wei, 1993).

Valentine Genon-Catalot (Université Paris 5 René Descartes)
For diffusion having ergodic properties, complete results are available when estimating both drift and diffu-
sion parameters by maximum likelihood (consistency, asymptotic normality as the sampling interval tends
to 0 and the total length time interval of observation tends to ∞). Without ergodicity assumptions, ex-
act maximum likelihood estimators of diffusion parameters have now well-known properties (consistency,
asymptotic mixed normality, as the sampling interval tends to 0 within a fixed length time interval). Because,
for most models, the exact likelihood is not analytically tractable, these results are of a theoretical nature
and researchers have all been faced with the same problem: it was not possible to produce exact simulated
data.

Now, let me express my enthusiasm and congratulate the authors for their impressive papers. Retro-
spective exact simulation of diffusions sample paths is a revolution for the study of diffusion processes and
especially for the statistics of diffusion processes. This revolution is just at its first steps of development.

The authors focus on producing unbiased estimation of the exact likelihood. A crucial step is to obtain
unbiased estimators of the transition density pt.x, y, θ/ of the model. I am especially interested in three of
the methods proposed to achieve this goal: the acceptance and the simultaneous acceptance methods and
the Poisson estimator. For these, the authors use a representation formula of the transition density which
was already known but had only been used for theoretical purposes. This formula contains the expectation
of a functional under a Brownian bridge distribution. I am particularly impressed by the simultaneous
acceptance method which produces a very simple unbiased estimator of this expectation for all values of
the parameter to be estimated. Also, the Poisson estimator is interesting because it can be applied to a
wider framework.

Numerous problems remain to solve. In particular, the paper makes no connection between the simu-
lations and theoretical results. For instance, the sine model is a null recurrent diffusion whereas logistic
growth may be positive recurrent. Asymptotic results on maximum likelihood estimators are thus differ-
ent. Joint estimation of drift and diffusion parameters is not investigated here. In diffusion models, using
simulation based on Euler schemes, we can observe that some parameters are badly estimated and others
are not: for instance, when the drift is mean reverting .b.x/=α.β−x//, α is badly estimated (a good esti-
mator requires a very large time interval), and β is always well estimated. The parameters in the diffusion
coefficient are usually well estimated (even when the total time interval is small). This area is probably
under study by the authors and this paper suggests plenty of new and interesting topics.

Konstantinos Kalogeropoulos (Athens University of Economics and Business)
I add my congratulations to the authors for their wonderful contribution to the challenging problem of
inference for diffusions.

My comments focus on two assumptions that hinder some desirable extensions. The first assumption
requires the Markovianity of the observed diffusion. Although not stated explicitly, it is the Markov
property that allows us to write down the log-likelihood as

l.θ|V/=
n∑

i=1
li.θ/, li.θ/ := log{p∆ti .Vti−1 , Vti ; θ/}:

Non-Markovian diffusion models are being used extensively. Famous examples include stochastic volatility
and continuous time autoregressive moving average models.

The second assumption stems from the transformation in equation (3). To find such a transformation
h.·/ for a d-dimensional diffusion we need to solve the following vector differential equation:

∇h.Vt , θ/σ.Vt , θ/σ.Vt , θ/′ ∇h.Vt , θ/′ = Id , .35/

where now σ.Vt , θ/σ.Vt , θ/′ denotes the diffusion matrix and Id is the identity matrix of dimension d. Since
equation (35) is not always solvable, this limits the extensions to the multivariate case. Aït-Sahalia (2004)
termed the diffusions with solvable equation (35) reducible. He also showed that the diffusions that are
involved in ordinary stochastic volatility models do not belong to this class.

An alternative likelihood-based approach uses data augmentation schemes; see Roberts and Stramer
(2001), Elerian et al. (2001) and Eraker (2001). These schemes overcome the barrier of the Markov prop-
erty and, although they do not provide exact inference, their discretization error may become arbitrarily
small.
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The existence of the transformation in equation (3) is a major issue for data augmentation schemes as
well. Under a fairly thin discretization the quadratic covariation process determines exactly the parameters
in σ.Vt , θ/ and the algorithm degenerates. Nevertheless, there is some on-going work that handles some
cases of multivariate diffusions, Kalogeropoulos et al. (2006a) propose a reparameterization for reducible
diffusions, whereas Kalogeropoulos (2006), Kalogeropoulos et al. (2006b), Chib et al. (2004) and Golightly
and Wilkinson (2005) present algorithms for stochastic volatility models.

Mathieu Kessler (Universidad Politécnica de Cartagena)
The authors are to be congratulated for providing an impressive collection of ingenious and innovative
ways to implement likelihood-based estimation for discretely observed diffusions. Their paper combines
original expressions for the transition density of the process and the use of exact simulation algorithms in
the corresponding Monte Carlo procedures.

Like several other recent papers, it focuses on obtaining the best possible numerical approximation
to the likelihood, for the derived estimators to inherit the nice properties, e.g. asymptotic efficiency, of
the likelihood-based estimators. In particular, the authors emphasize the fact that, through the use of
exact simulation algorithms, they can obtain unbiased estimations of the transition density. However, I
am missing insight about the consequences of the Monte Carlo approximation on the behaviour of the
estimators. Why, for example, is it an improvement with respect to the existing methods to be able to use
unbiased estimators of the transition density? Would it be possible to assess, through a theoretical result,
the rate at which the number N of Monte Carlo replicates should grow with the number n of observations,
for the asymptotic efficiency to be maintained under the assumption of ergodicity? The existing results for
approximation-based estimators that have been proposed in the literature can only guarantee the existence
of such an increasing sequence Nn. In particular, what would be the asymptotic properties of the proposed
estimators, for a fixed Monte Carlo effort, when the number of observations tends to ∞?

Unfortunately, such results do not seem to be easy to obtain. It would be different if the Monte Carlo
approximation did not concern the transition density itself but the derivative of its logarithm with respect
to the parameter, i.e. the building-block of the score function. Indeed, if an unbiased Monte Carlo approx-
imation of @θpt=pt.u, v; θ/ were available, it would be possible to prove the asymptotic normality of the
deduced approximate estimator, even for a fixed Monte Carlo effort. Moreover, it would be easy to char-
acterize precisely the corresponding loss of efficiency in the asymptotic variance; this kind of result was
obtained for estimating functions in Kessler and Paredes (2002). My last question is, therefore, could some
of the expressions that are proposed for the transition density be used to derive unbiased simulation-based
approximations to @θpt=pt.u, v; θ/?

Claudia Klüppelberg (Munich University of Technology)
I congratulate the authors for an immensely impressive and path breaking paper. They use a very rich
methodology embracing deep results from stochastic analysis, Markov chain Monte Carlo simulation and
algorithmic methods. Their simultaneous acceptance method is based on the Cameron–Martin–Girsanov
formula, which is the basis of dealing with stochastic differential equations driven by Brownian motion.
Of course, this is a very large class of models, although they must restrict it further for technical reasons.

As modelling issues quite naturally often run ahead of the necessary development of the correspond-
ing statistical inference, the next question related to their work is already waiting for its solution. High
frequency financial data are modelled by continuous time models; stylized facts require, among other
features, the estimation of processes with jumps. These features are covered by the meanwhile well-known
Barndorff-Nielsen and Shephard (2002) model that was mentioned in the paper, and also by a new contin-
uous time generalized autoregressive conditional heteroscedasticity (COGARCH) model, which is defined
as follows. For a Lévy process L and parameters β, η,ϕ> 0 the COGARCH(1,1) process is defined as the
solution to the equations (for t> 0)

dSt =√
Vt dLt ,

dVt+ = .β−ηVt/ dt +ϕVt d[L, L].d/
t ,

(Klüppelberg et al., 2004) where V is left continuous and

[L, L].d/
t = ∑

0<s�t

.∆Ls/
2

is the discrete part of the quadratic variation process of L, i.e. it is a subordinator.
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This process has been estimated in Müller (2005) by methods that were used also in Roberts et al. (2004)
for the Barndorff-Nielsen and Shephard model, but both papers are restricted to finite activity Lévy pro-
cesses. It would indeed be interesting to see over the next few years a development of such clever methods
as presented in the present paper to models that are driven by infinite activity Lévy processes.

Hans R. Künsch (Eidgenössische Technische Hochschule Zürich)
The authors are to be congratulated on their impressive and highly original paper. I believe that diffusion
processes will become increasingly more important in statistical applications because they are the obvious
extension of deterministic differential equations which are widespread. It is nice that with the methods
of this paper it is not necessary to rely on a time discretization. However, one hopes that the estimation
procedures do not depend on the fine structure that is implied by the diffusion model since this is the most
doubtful part.

As a more technical comment, I would like to add that the exact simulation method that is presented
here allows us to implement the accept–reject version of the particle filter (see Hürzeler and Künsch (l998))
for partially observed diffusions. Assume that the observations Y1:n = .Y1, . . . , Yn/ are conditionally inde-
pendent given .Xt/ and Yi depends on Xti only. The particle filter approximates the conditional den-
sity of Xti given Y1:i by a sample of particles .x

.1/
ti , . . . , x

.N/
ti /. To generate particles at time ti+1 recursively,

we select an index K with probabilities proportional to exp{A.x
.k/
ti /}Z.x

.k/
ti /; then given K =k we generate

a proposal at time ti+1 according to the density

1

Z.x
.k/
ti /

exp
{

A.u/− .u−x
.k/
ti /2

2.ti+1 − ti/

}
p.yi+1|Xti+1 =u/

and finally we decide whether to accept this proposal by the exact algorithm in this paper. If the normal-
izing constant Z.x

.k/
ti / cannot be computed in closed form, we can replace it by a suitable approximation

at the cost of an additional factor in the acceptance probability.

T. J. Lyons (Oxford University)
This paper is focused on developing earlier and interesting work on methods for simulating processes (and
particularly bridges) into numerical tools for distinguishing between a parameterized family of Markov
models on the basis of discrete time observations of a process. A key point in this is to understand, in a
computationally effective way, the relative likelihood of the Markov transition xn →xn+1 given the different
parameter values. In effect, we need a parameterized solution to the backward equations.

One could certainly attempt this analysis in a variety of ways, including the use of partial differen-
tial equations. It is clear that the benefits and complexity of different approaches will mean that some
approaches are better than others.

To make comparisons, it seems essential that a clear quantitative approach is adopted, and one regret
that I had about the paper is the lack of analytic details with which to judge the quality of the approach. In
particular, it would be helpful to have precise classes of models for which we would apply this approach,
and estimates for the errors after a given number of function evaluations etc. in terms of the smoothness
of the coefficients in the models studied etc.

It would have been very helpful to have precise results (in terms of the number of function evaluations
per unit error) setting out when this method was more effective than, for example, partial differential
equation methods. The latter might be expected to perform quite well in low dimensions.

Rogemar Mamon and Keming Yu (Brunel University, Uxbridge)
The applied theme of the paper on likelihood-based inference for discretely observed diffusions is very
interesting. However, in financial modelling the specification of a diffusion process V via the stochastic
differential equation (SDE) in equation (1) is too simple to capture the stylized features of the economy
and markets. Nowadays, the use of regime switching models to understand the behaviour of financial
variables (e.g. interest rates) is becoming more common, motivated by empirical evidence and owing to
economic grounds. See, for example, Bansal and Zhou (2002). In particular, both the drift and the diffusion
coefficients of the SDE in equation (1) can have dynamics of their own. For instance, they can be allowed
to switch between economic regimes and the shift is modulated by a finite state Markov chain. This will
certainly enrich standard models such as the Cox–Ingersoll–Ross model that was mentioned in the paper.
Guo and Zhang (2004) and Wu and Zheng (2004), among others, have provided examples for this type of
model formulation. Assuming that an SDE describing the evolution of a financial phenomenon does not
have an analytic solution, especially if it has periodic drift and therefore the log-likelihood is not available,
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we wonder how the exact algorithm can be extended into the setting where the process has a mixture of
Gaussian and Markov chain dynamics. It would be of interest to determine how the exact algorithm can
be employed efficiently in the estimation of transition matrices, the state of the Markov chain and other
model parameters.

Also, the authors pointed out that the ideas and methods of the paper can accommodate SDEs with
jumps provided that they are based on a finite activity Lévy process. In general, what class of integrators
(i.e properties and characterization) are possible for the stochastic integral in equation (1) so that either
the EA1 or EA2 algorithms can be extended successfully? In other words, what kind of semimartingales
can be included in this class?

Finally, it is not clear to us how the proposed transition density estimation technique compares with
nonparametric estimation methods such as the kernel estimation of transition density. The latter is much
simpler in mathematical details, and computationally easier to implement as well as distribution free. For
example, given the observations V = {Vt0 , Vt1 , . . . , Vtn} of a diffusion process V , we can estimate quickly
the transition density (2) via

p̂t = 1
n

n∑
i=1

Kh.Vt1 − t/,

where Kh.·/ is a kernel function with bandwidth h.

Jesper Møller (Aalborg University)
I wonder how successfully the ideas of this interesting and stimulating paper can be extended to the case of
a Cox process Xt , where Vt is a non-negative diffusion process and Xt conditional on Vt is a Poisson process
with intensity function Vt . Suppose that t1, . . . , tn are the events of the Cox process observed on a finite time
interval [0, a] and, as in the paper, we observe the diffusion process only at the times 0 = t0 < t1, . . . , < tn.
Using the notation in the paper, the likelihood is

L.θ|v, t1, . . . , tn/=Eθ

{
exp

(
−

∫ a

0
Vt dt

)
n∏

i=1
Vti ×p∆ti .Vti−1 , Vti ; θ/

∣∣∣∣v
}

where the conditional expectation is with respect to the diffusion process given .Vt0 , . . . , Vtn / = v. How
efficiently would the methods in the paper apply when the likelihood is approximated and maximized by
using a Markov chain Monte Carlo missing data approach?

In passing it may be worth noting that, if the diffusion is a Cox–Ingersoll–Ross model, Srinivasan
(1988) and Clifford and Wei (1993) have established the equivalence between the Cox process and the
process of death times of a simple immigration, birth and death process, which is easy to simulate. Inci-
dentally, this model is a special case of the permanent process that is introduced in McCullagh and Møller
(2005).

Sara Pasquali and Fabrizio Ruggeri (Istituto di Matematica Applicata e Tecnologie Informatiche, Milan)
We express our gratitude to the authors for an enlightening paper which provides an outbreaking new
method for likelihood-based inference for discretely observed diffusions. The paper provides many details
about the method and discusses many of its aspects, leaving a thorough analysis of some of them to forth-
coming papers. We are looking forward to reading them since they will address some of our concerns. Here
we just want to comment on possible extensions of the method.

The most general stochastic differential equation is given by

dVs =b.s, Vs; θ/ ds+σ.s, Vs; θ/ dBs,

as in the following case about population dynamics:

dVs =R.s/− α exp.βT/Vs −σ exp.βT/Vs dwt

where θ= .α,β,σ/, wt is Gaussian white noise, T is the temperature (possibly dependent on the time s)
and R.s/ is a known recruitment function.

In the paper, the time s does not appear directly in the drift and in the diffusion, but only through Vs.
We wonder whether the method proposed is valid also in this case.

As a second comment, we think of practical problems in which parallel, multivariate diffusion processes
are to be analysed all together. We suppose that the diffusion processes might slightly differ in drift and/or
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diffusion and/or the prior on the parameters. Is there a way to estimate all of them together, sharing as
many simulated points as possible, or should they be analysed separately?

Another related comment is about evolving systems in which new data are made available as time goes
by. Is it possible to analyse the process on [0, s+ t], starting from estimation in [0, s] and adding the data
that are observed in .s, s+ t], or should the estimation on [0, s+ t] restart from scratch?

It would be interesting to explore the relationship between parameter estimation and stochastic stabil-
ity, e.g. in the logistic growth model (example 2) where the equilibrium state 0 is stable for σ2 > 2R and
unstable otherwise. In the latter case, which is considered in the paper, it is known that the process Vs

fluctuates around the value Λ. Once data have been simulated from a logistic model, we would like to
know what happens about the stability properties of the equilibrium, especially when parameters are close
to the threshold σ2 =2R.

Harry Pavlopoulos (Athens University of Economics and Business)
The authors are to be congratulated for their ground breaking work on likelihood-based parametric infer-
ence for discretely observed diffusions, as well as for the clarity with which they have summarized its
mathematical and computational aspects (indeed of highly technical nature) in the paper. The purpose of
this comment is to raise two interrelated points.

First, adding to the possible extensions of the methods that were considered by the authors, I sug-
gest also the consideration of discretely observed diffusion with boundary condition(s) imposed on either
one or both end points of its interval state space, provided that these are regular accessible boundaries. In
other words, is it possible to extend the methodology to estimate parameters imposed through boundary
condition(s), specifying transition probabilities from the interior of the state space to its boundaries and
vice versa, in addition to parameters introduced through the drift and diffusion coefficients? This question
is really of much broader intent, pertaining also to nonparametric methods of inference for discretely
observed diffusions, such as those proposed by Aït-Sahalia (1996), Jiang and Knight (1997), Stanton
(1997) and more recently by Fan and Zhang (2003) and Bandi and Phillips (2003). This consideration is of
importance in geophysical and other environmental applications where the observed process is intermit-
tent. An example of this situation is the diffusion model that was proposed by Pavlopoulos and Kedem
(1992) for processes of spatially averaged rain rate over a sufficiently large region, where the state space
of the diffusion is the closed interval [0, ∞/ and intermittency between wet and dry states of the region is
modelled via a sticky boundary condition at {0}.

Second, I should like to share that throughout my reading of the paper I was under the impression that
the spacing between time instants at which the diffusion is observed is quite general, as implied by the
inequality 0= t0 <t1 < . . .<tn when the log-likelihood of the observations v was defined. Regular spacing in
the EURODOLLAR data and in the simulations of the SINE and LOG-GROWTH data did not change
this impression, until reading the conclusions of the paper where the authors address the performance
of their methods by implying a uniform sampling frequency ∆t, and thus regular spacing. This point
remains subtle, at least in my understanding, and needs clarification. However, if the methodology holds
under irregular spacing, then in the case of regular accessible boundaries it might be still implemented for
conditional inference, at least, using observations only from the interior of the state space and ignoring
those on the boundaries.

Christian P. Robert (Université Paris Dauphine)
The authors have achieved in this paper a tour de force, bypassing the usual and awkward discretization
that is required for processing diffusions. The example of the Cox–Ingersoll–Ross model is quite revealing
in this respect since, although a closed form representation via non-central χ2-distributions (or ARG(1)
chains) does exist, Euler’s discretization of the diffusion is biased because of the positivity constraint on
the discretized process. This paper is thus bound to have long-term consequences in the way that we can
handle and do inference on stochastic processes.

Obviously (and happily so!), much remains to be done in this new direction for the processing of param-
eterized diffusions. The boundedness condition on α2 +α′ is quite restrictive, and the construction of the
bound r.ω, θ/ seems to be another tour de force. It would be of considerable interest to achieve a relaxation
of the boundedness condition as well as a more constructive approach to the derivation of the bound
r.ω, θ/. Given that the method at the core of the paper is intrinsically an accept–reject method, I wonder
whether or not importance sampling alternatives could be available, in that they do not require (in princi-
ple) a bound on the target distribution that is to be simulated. In particular and in parallel with standard
importance sampling theory on finite dimensional distributions, is it possible to come up with variance
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comparison and optimality goals in a family of different importance functions? Furthermore, in classi-
cal Monte Carlo approximations, using an indicator I as in equation (12) in the estimation of pt.x, y; θ/
often leads to estimators with high variance. A choice of an importance function that would increase the
probability of getting a 1 for this indicator would thus be of interest. For instance, in the simulation of
the Cox–Ingersoll–Ross model, importance functions that introduce a drift in the variance of expression
(30) lead to a significant improvement in the estimation of some quantities (Douc et al., 2005). Similarly,
any kind of Rao–Blackwellization applied to this indicator, if possible, would decrease the variance.

Mathias Rousset (University of Toulouse) and Arnaud Doucet (University of British Columbia, Vancouver)
The authors are to be congratulated for this impressive paper which solves many problems and opens many
avenues of investigation. We present here a direct application of their methodology to time discretization
error-free filtering of partially observed diffusions. Consider the following diffusion where X0 ∼π0 and for
t> 0:

dXt =α.Xt/ dt +dBt:

This diffusion is partially observed at times {tk}k�1 (where tk > tk−1) and the conditional density of the kth
observation Ytk given by gk.ytk |xtk / is known analytically. We are interested in estimating sequentially the
distributions

p.xt0:tk |yt1:tk / dxt0:tk =P.Xt0:tk∈dxt0:tk |Yt1:tk =yt1:tk /

where t0 =0, xt0:tk = .xt0 , xt2 , . . . , xtk / and yt1:tk = .yt1 , yt2 , . . . , ytk /. To achieve this we propose to use a sequen-
tial Monte Carlo (SMC) algorithm (Doucet et al., 2001). The distributions are approximated by a large
number N of weighted random samples {X

.i/
t0:tk } .i=1, . . . , N/ termed particles. The particles are sampled

by using

X.i/
t0:tk

∼qk.xt0:tk |yt1:tk /

with

qk.xt0:tk |yt1:tk /=π0.xt0 /
k∏

n=1
qn.xtn |ytn , xtn−1 /

where {qn.xtn |ytn , xtn−1 /} are importance distributions known pointwise. In the standard SMC framework,
these particles should be reweighted according to normalized weights proportional to

wk.X
.i/
t0:tk

/= p.X
.i/
t0:tk , yt1:tk /

qk.X
.i/
t0:tk |yt1:tk /

=wk−1.X
.i/
t0:tk−1

/
p̃∆tk .X

.i/
tk−1 , X

.i/
tk / g.ytk |X.i/

tk /

qk.X
.i/
tk |ytk , X

.i/
tk−1 /

where
p̃∆tk .xtk−1 , xtk /=P.Xtk∈dxtk |Xtk−1 =xtk−1 /=dxtk−1

=N∆tk .xtk −xtk−1 / exp{A.xtk /−A.xtk−1 /} a.xtk−1 , xtk /

with

A.u/=
∫ u

α.z/ dz

and

a.xtk−1 , xtk /=EW.xtk−1,xtk/

[
exp

{
− 1

2

∫ tk

tk−1

.α2 +α′/.ωs/ ds

}]
:

The particles are resampled whenever the variance of {wk.X
.i/
t0:tk /} is too large. Clearly this SMC algorithm

cannot be implemented as p̃∆tk .xtk−1 , xtk / does not admit a closed form expression. However, a straightfor-
ward argument shows that it is not necessary to know wk.X

.i/
t0:tk / exactly. Only an unbiased positive estimate

ŵk.X
.i/
t0:tk / of wk.X

.i/
t0:tk / is necessary to obtain asymptotically consistent SMC estimates under weak assump-

tions. Hence all the techniques that were developed by the authors to estimate p̃∆tk .xtk−1 , xtk / unbiasedly
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can be applied straightforwardly. The need for positive estimates restricts us to diffusions that are similar
to those of the EA1 or EA2 algorithms.

To be efficient, the SMC method requires the design of ‘good’ importance distributions and to obtain
estimates of the importance weights with low variance. To design the importance distributions, approxi-
mate analytically p̃∆tk .xtk−1 , xtk / by a Gaussian distribution using a local linearization technique (Durham
and Gallant, 2002) and combine this approximate prior with g.ytk |xtk / or a linearized version of it to obtain
qk.xtk |ytk , xtk−1 /.

It is also crucial to reduce the variance of the estimates of the weights given by

var{ŵk.Xt0:tk /}=var{wk.Xt0:tk /}+E[var{ŵk.Xt0:tk /|Xt0:tk }]:

To achieve this, if the Poisson estimator of Section 6 is used, we could sample for each particle P Poisson
random variables but use the same Brownian bridge to sample retrospectively for computational savings.
However, a large Poisson parameter λ and a large P may be needed to obtain a reasonable variance.

Osnat Stramer (University of Iowa, Iowa City)
This paper proposes a new, thorough and interesting approach for calculating the likelihood of discretely
observed diffusions. The log-likelihood of the data set v is

l.θ|v/=
n∑

i=1
log{p∆ti .Vti−1 , Vti ; θ/},

where the transition density of the diffusion process V is p∆ti .Vti−1 , Vti ; θ/. I thank the authors for providing
a mine of ideas for modelling continuous time models.

In my comment, I shall also refer to two other existing approaches for estimating the transition density.
One approach is the simulation methods that were proposed by Pedersen (1995) and improved substantially
by Durham and Gallant (2002). This approach involves two types of approximations or errors:

(a) due to discretization and
(b) due to averaging.

Increasing the number of time intervals per ∆ti reduced the bias, but at the cost of increasing the number
of simulations (see Stramer and Jun (2005a)). The second error will not disappear even if we use exact
simulation. The methodology that is introduced in this paper avoids the first error but its efficiency depends
heavily on the efficiency of the exact simulation of conditional diffusions. As pointed out by the authors,
the acceptance rate of the Poisson process typically decreases exponentially to 0 in the length of the interval
∆ti between adjacent observations.

Another approach for estimating the transition probability is the closed form method that was intro-
duced in Aït-Sahalia (2002a, 2004). It has been shown in Aït-Sahalia (2002b) and Stramer and Jun (2005b)
that the closed form methods can be much faster and more accurate than the Durham and Gallant (2002)
method in many interesting examples, though in theory it is assumed that∆ti is small. It would be interesting
to see a numerical comparison of the methods that were presented in this paper with the simulation-based
methods and the closed form methods.

The methodology that is presented in this paper requires that the diffusion process be transformed to a
new one with unit volatility. The simulation approach is in general more amenable when this transforma-
tion can be done (see Durham and Gallant (2002)). As noted by the authors a multivariate extension of
their methods is therefore only possible for a limited class of models. More investigation in this direction
will be necessary.

The authors replied later, in writing, as follows.

Firstly we thank all the discussants for their many contributions, insights and thought-provoking ques-
tions. The area of inference for partially observed diffusions is rapidly developing and hopefully our paper
and the subsequent discussion will add further momentum to this exciting field.

The scope of the exact algorithm
A number of discussants (including Ball and his colleagues, Bingham, Chopin, Crisan, Kalogeropoulos,
Moulines, Pasquali and Ruggeri, and Robert) asked about the scope of the exact algorithm (EA) method-
ology. Our paper introduces a general framework for inference which is illustrated mainly within the quite
restrictive EA1 context and to some extent the more general EA2 situation.
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We recall that the application of algorithm EA2 requires conditions (a)–(c) just below equation (4) to
be satisfied, and the additional condition (9). Whereas (a)–(c) are largely innocuous, condition (9) is a
serious constraint on the applicability of the method. For instance, many natural diffusion models violate
this condition (including for instance the Ornstein–Uhlenbeck process). There are two ways in which the
applicability of our methodology can be extended significantly beyond these constraints.

(a) As outlined in the paper, the Poisson estimator permits unbiased estimation for models outside D2.
This permits the construction of a Monte Carlo EM algorithm for classes of diffusions that are
outside D2. The potential problem with this approach is that finite variances of estimators are not
guaranteed to exist.

(b) We have recently developed an extension of the EA called the EA3 algorithm (see Beskos et al.
(2005a)) which is applicable to all diffusions in a class D3 which is described as diffusions which
satisfy only conditions (a)–(c). Since D3 is not constained by restriction (9), it covers a very broad
class of models.

Algorithm EA3 is mathematically more complex than either EA1 or EA2, though not necessarily less
efficient. It is based on the idea that, once upper and lower bounds for the trajectory are known, the usual
rejection sampling algorithm is easy to implement. For this, it introduces a different decomposition of
Brownian motion, which we call layered Brownian motion. This decomposition permits upper and lower
bounds on the diffusion sample path to be imposed once the sample path layer has been constructed. What
makes algorithm EA3 more complicated than algorithm EA2 is the fact that the joint law of Brownian
motion and its maximum modulus up to a fixed time t is not easily tractable, and exact simulation requires
the construction of specific retrospective simulation techniques for probabilities that are expressible as
infinite sums of alternating terms.

A minor modification of algorithm EA3 can also be used to cover other cases. For instance, by a judicious
choice of the layers that are used in the construction, diffusions with finite entrance boundaries (and which
are therefore not reached with probability 1) such as the shape space Ornstein–Uhlenbeck model of Ball
and his colleagues can be simulated exactly. However, we also appreciate that the approximate approach
that is adopted in their contribution represents sound methodology, since it seems easy to ensure that the
approximation that is involved is arbitrarily accurate.

Several discussants enquired about other extensions. Beskos et al. (2005a) also shows that extensions of
the EA to the time inhomogeneous case (as queried by Pasquali and Ruggeri) is straightforward, although
the function φ must be modified accordingly. Moreover extensions to the multivariate case (as mentioned
by Kalogeropoulos and Bingham) is routine provided that the following two (non-trivial) conditions are
met.

(a) The multivariate version of the transformation that is given in equation (3) needs to be possible.
Although equation (3) is always possible for scalar diffusions, its multivariate counterpart (trans-
lating a diffusion with arbitrary diffusion coefficient to a diffusion with unit diffusion coefficient)
may not exist. Conditions for this are given in Aït-Sahalia (2004) as mentioned in the contributions
of Kalogeropoulos and Bingham.

(b) Assuming that condition (3) is possible, the resulting multivariate drift function must be of gradient
type, i.e. there is a function V.x/ such that the drift α.x/ satisfies

α.x/=∇A.x/:

This is a very common and natural condition for diffusions which corresponds (in the stationary
case) to the reversibility of the diffusion.

However, when these two conditions are not met, it seems difficult to see how the EA can be applied at
all.

Kalogeropoulos mentions the interesting extension to non-Markov models. Stochastic differential equa-
tions are very naturally formulated in non-Markov settings, and existing data augmentation techniques
can in principle handle this generalization. Furthermore this generalization is important for certain appli-
cation areas such as finance where Markovianity can be doubtful. (See Dellaportas et al. (2004) for an
example of a Bayesian analysis of a non-Markov model by data augmentation.) Except in special cases,
the EA cannot be applied for non-Markov models.

Pavlopoulos discusses two generalizations. Firstly the case of regular accessible boundaries for diffu-
sions, for instance with reflection at the boundary, is complicated. Where diffusion drifts are locally
bounded and converging to 0 at the boundary, and volatilities are bounded away from 0, pure reflecting
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boundaries can easily be dealt with by unfolding the reflecting boundary producing mirror image dynamics
either side of the boundary. This approach works for two-sided boundaries also. However, it is not clear
how to extend this to the case where the drift is not converging to 0 at the boundary since now the unfolded
diffusion has discontinuous drift.

Secondly, Pavlopoulos asks about varying ∆t . In fact this causes no problem for our methodology since
all the Monte Carlo procedures are carried out independently between each two consecutive observations.

Kluppelberg and Mamon and Yu ask the intriguing question about whether our methodology can be
extended to deal with processes that are driven by Lévy process noise. To date, we have no idea how this
can be accomplished in the infinite activity Lévy case. However, we certainly agree that this is an important
open problem arising from our work here.

Numerical investigations and comparisons
Several discussants (Clifford, Crisan, Lyons and Stramer) request further comparisons with existing meth-
odology and we agree completely that this is needed.

There are two (not entirely mutually exclusive) stages to this work. Firstly are numerical investiga-
tions into the effectiveness of the EA for different diffusions in comparison with competing discretization
schemes. Important progress towards this goal has been achieved in Casella’s comment and in more detail
in his doctoral thesis.

Furthermore, there are tight analytic bounds on the computational cost of the EA in Beskos and Roberts
(2005) and Beskos et al. (2004). For instance in the recast von Mises example in the interesting discussion
of Kent, Beskos and Roberts (2005) demonstrated that to simulate the diffusion over a time interval of
length T requires computational effort of order λ2T=σ2.

The second stage in a comparison study will involve comparisons of the methods of this paper for like-
lihood-based inference with competitor methodologies. One important issue here will be that, although
we would expect most (or maybe all) methods to deteriorate for increasingly sparse data sets, it is of great
interest to know winch methods show the greatest level of robustness to this phenomenon. For the Markov
chain Monte Carlo data augmentation methodology for instance this involves studying the effects of block
updating strategies for data sets where imputing the entire missing data between observations is inefficient.
Some interesting conclusions in this direction appear in Chib et al. (2004).

For this comparison work, we emphasize again the important distinction between methods that can
smoothly estimate whole likelihood surfaces and those which are focused on pointwise estimation. The
former methods are highly likely to be the more effective in most statistical contexts. Smoothness (more
precise) of the estimated likelihood surface is required for the proof of consistency (for large Monte Car-
lo samples) of maximum likelihood estimates as demonstrated in Beskos et al. (2005b). Lyons suggests
comparisons with numerical methods for solving the partial differential equations that are satisfied by
the diffusion transition density. This approach was explored in Lo (1988) although it appears difficult to
estimate entire likelihood surfaces simultaneously by using this method.

Theoretical foundations
Kessler asks interesting questions about the properties of estimators that are produced by our Monte
Carlo methodology. We have only partial answers to this question, showing for instance in Beskos et al.
(2005b) that, as the Monte Carlo sample size increases, the Monte Carlo maximum likelihood estimate
converges almost surely to the true maximum likelihood estimate. Furthermore, the Monte Carlo EM
method can give an unbiased estimate of the score function, and thus we would expect that, even for
fixed Monte Carlo sample size per observation, the Monte Carlo EM maximum likelihood estimate
would be consistent in the limit as the sample size increases. These are both important consequences
of unbiasedness in the estimators. We certainly concur that more quantitative rate results would be
desirable.

However, although our methods are based on Monte Carlo methods, as pointed out by Robert, the
transparency of our methods readily permits variance reduction ideas which mean that, in the examples
that we have considered so far, very robust estimates of whole likelihood surfaces are obtained using
minimal computational effort.

Filtering and the Poisson estimator
Robert and Stramer ask for guidance about the optimal implementation of the Poisson estimator. In recent
work (Fearnhead et al., 2005) we have generalized the Poisson estimator to permit a general distribution
for the number of time points at which the diffusion is evaluated, and we have produced optimality criteria
for this distribution. Motivated by these criteria, a sensible proposal distribution appears to be a negative
binomial distribution whose mean is close to

∫ t

0 {c −f.ωs/}ds. In the EA1 setting of the SINE example,
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such a choice can lead to a reduction in variance by two or three orders of magnitude over the Poisson
estimator with parameters that are chosen as in Section 7.

There are several comments concerning how our work can be applied to filtering problems, e.g. where
we make partial observations of the underlying diffusion at discrete time points. Chopin points out that
the EA enables a simple implementation of the basic particle filter (Gordon et al., 1993) as the EA enables
us to simulate exactly the value of the state at the next time point given the current value of the state.
Künsch suggests that the rejection-sampling-based particle filter of Hürzeler and Künsch (1998) could be
applied, and Doucet suggests a more general particle filter where the Poisson estimator is used to generate
random weights for each particle, with the mean of these random weights being equal to the true (analytic)
weight.

We have independently been investigating how the EA and related ideas can be applied to particle filters,
and in Fearnhead et al. (2005) we have developed a general framework for unbiased particle filters. Here
we give a brief summary of results in the case of observing the SINE data set with normal error (variance
σ2). For this application, the rejection sampling idea of Künsch can be applied by

(a) choosing a current particle with probability proportional to

exp
{

−A.x.k/
ti

/− .yi+1 −x
.k/
ti /2

2.σ2 + ti+1 − ti/

}
,

(b) proposing Xti+1 =u conditional on x
.k/
ti from a normal distribution with mean

x
.k/
ti σ

2 + .ti+1 − ti/yi+1

σ2 + ti+1 − ti
,

and variance σ2.ti+1 − ti/=.σ2 + ti+1 − ti/, and
(c) performing two accept–reject steps, the first with acceptance probability exp{A.u/ − 1}, and the

second being the EA1 accept–reject step for the path.

This algorithm has the same overall acceptance probability as a simple implementation of algorithm
EA1 for simulating from the SINE state diffusion, but it has the important advantage of simulating from
the particle filter’s target distribution at time ti+1 and avoiding the need for an importance sampling cor-
rection by the likelihood. This is particularly useful if σ2 is small relative to ti+1 − ti. However, an efficient
random-weight particle filter (similar to the ideas of Rousset and Doucet) has computational advantages
over even this rejection algorithm. The advantages depend on the value of the states at time ti and ti+1—but
in extreme cases (where both state values are close to a multiple of 2π) computational gains of over a factor
of 10 are possible.

As Rousset and Doucet point out, to implement a random-weight particle filter requires the random
weights to be positive with probability 1. Although this is straightforward to achieve in EA1 situations,
we have adapted EA3 ideas to ensure this for general diffusions. The methodology that we have developed
is trivially extended to inference for diffusion-driven Cox processes (Møller and Clifford), and it should be
possible to extend to stochastic volatility models (Kalogeropoulos) and velocity models where positions
are observed (Kent). For full details see Fearnhead et al. (2005).

Mathematical formulation
Crisan suggests that it is more natural to avoid the step which transforms the observed diffusion to one
of unit diffusion coefficient. It is clear that this is mathematically equivalent to our approach, and the
Radon–Nikodym derivative that is obtained by using both approaches should be almost surely equivalent.
In fact, the solution to the differential equation that he gives in his equation (32) turns out to define our
unit diffusion coefficient transformation (3) in the time homogeneous case, and the time inhomogeneous
case results in a simple generalization of transformation (3) which we describe in detail in Beskos et al.
(2005a).

In fact, from a statistical perspective, it seems to us to be more natural to work with the transformed
unit volatility process since this can be thought of as an infinitesimal standardization of the missing data.

Implicit in Crisan’s comment is the useful idea that different dominating measure proposal distributions
can be used as the basis for the rejection sampling approach. There are several different tractable unit
diffusion coefficient proposals which could be used in this way: for example in the Cox–Ingersoll–Ross
example we used a Bessel process, and in more recent work we have used Ornstein–Uhlenbeck processes.
However, Crisan’s approach offers no additional generality since any general diffusion which has explicit
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finite dimensional distributions corresponds (through transformation(3)) to one which has unit diffusion
coefficient.

Miscellaneous
We concur with the view of Clifford, Künsch, and Mamon and Yu, who mention both the fact that diffu-
sions that are used in statistical modelling are often rather approximate, but that precise macroscopic
properties of models are likely to be unimportant in many practical modelling contexts. For instance in
financial data, stylized facts about financial asset power variation are at odds with the characteristic finite
non-zero quadratic variation which diffusions are bound to exhibit.

Clifford points out that the exact likelihood in the Cox–Ingersoll–Ross model is explicit. This is precisely
why we used this example so that the analytic solution could be explicitly compared with our results.

Chopin raises the possibility of substantially increasing efficiency at the cost of a certain bias by truncat-
ing drifts in regions which the diffusion is unlikely to visit in the time period of interest. This seems a sensible
practical suggestion. It turns out that algorithm EA3 using the layered Brownian motion construction can
be motivated in a similar way, and moreover allows unbiasedness to be retained.

Pasquali and Ruggeri and Genon-Catalot ask about the relationship between parameter estimation and
diffusion stability. In the asymptotic case, much is known about this through the elegant theory of mixed
asymptotic normality (see Basawa and Rao (1980)). In the finite sample case, it is difficult to make general
statements. However, as the discussants point out, even our simple logistic growth model is sufficiently
simple for interesting structure to emerge. In this example for instance, for σ2 > 2R, the diffusion will
eventually converge to 0 so presumably K will be badly estimated in this case.

Mamon and Yu ask about the comparisons of our methods with nonparametric methods for stationary
diffusions. Kent mentions a similar issue, pointing out that serial correlation of the data can be taken into
account by standard time series methods. Although this idea requires stationarity, an appealing feature
of such methodology is the fact that it will provide an increasingly good approximation to an exact likeli-
hood-based approach for sparse data—exactly the situation which is problematic for all currently existing
exact likelihood-based methods.
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