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[1] Assuming that earthquakes are the realization of a stochastic point process and that the
magnitude distribution of all earthquakes is described by the Gutenberg-Richter law with a
constant b value, we model the occurrence rate density of earthquakes in space and time by
means of an epidemic model. The occurrence rate density is computed by the sum of
two terms, one representing the independent, or spontaneous activity, and the other
representing the activity induced by previous earthquakes. While the first term depends
only on space, the second one is factored into three terms that include the magnitude, time,
and location, respectively, of the past earthquakes. In this paper we use the modified Omori
law for the time term, focusing our investigation on the magnitude and space terms. We
formulate two different hypotheses for each of them, and we find the respective maximum
likelihood parameters on the basis of the catalog of instrumental seismicity recorded in Italy
from 1987 to 2000. The comparison of the respective likelihood computed for the
seismicity recorded in 2001 provides a way for choosing the best model. The confidence
level of our choice is then assessed by means of a Monte Carlo simulation on the
varioushypotheses. Our study shows that an inverse power density function is more reliable
than a normal density function for the space distribution and that the hypothesis of
scale invariance of aftershock productivity with respect to magnitude can be rejected with
high confidence level. The final model is suitable for computing earthquake occurrence
probability in real circumstances. INDEX TERMS: 7223 Seismology: Seismic hazard

assessment and prediction; 7230 Seismology: Seismicity and seismotectonics; 7260 Seismology: Theory and

modeling; KEYWORDS: earthquake clustering, aftershocks, stochastic processes, hypothesis test, Italian

seismicity
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1. Introduction

[2] Numerous probabilistic earthquake occurrence models
have been developed to describe various aspects of seismic
occurrence patterns [see, e.g., Anagnos and Kiremidjian,
1988]. At the present there is no simple answer to the
question of which is the best model. Anyway an earthquake
precursor or forecasting hypothesis should be defined in a
quantitative way, so as to allow its testing by means of
rigorous statistical procedures [Console, 2001]. These pro-
cedures are generally validated assessing the confidence
level by which a previous ‘‘null’’ model should be rejected
in comparison with a new one. Among several space-time
statistical models based on earthquake clustering, Ogata
[1998], Jackson and Kagan [1999], and Console and Murru
[2001] showed that modeling earthquake clustering as a
stochastic process characterized by a limited number of
free parameters allows the computation of the occurrence
rate density as a continuous function in space and time.
Consequently, this formulation allows the estimate of
the likelihood function of a seismic catalog under such
hypothesis, and the assessment of the maxi-mum likelihood

parameters of the hypothesis [Kagan, 1991]. Another
possibility given by such formulation is the computation of
the likelihood ratio (performance factor) of two models
based on a given set of observations. Console and Murru
[2001] concluded that the clustering hypothesis exhibits a
much higher likelihood with respect to the time-independent
Poisson hypothesis and that it can itself be regarded as a sort
of more accurate null hypothesis against which different
forecasting hypotheses should be tested. In this paper we
refine the formulation of the clustering hypothesis and
demonstrate the validity of this new formulation with respect
to the previous one.

2. Earthquake Clustering Models

[3] Here we give a short outline of the method for
modeling the interrelation of any earthquake with any other,
referring the reader to the above mentioned papers for
details.
[4] Earthquakes are regarded as the realization of a point

process, known by statisticians as the Hawkes process. Each
event is characterized by its location-time-magnitude
parameters (x, y, z, t, m). In the following, we shall neglect
the z (depth) coordinate only for sake of simplicity.
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[5] For the magnitude density distribution, independent
of any other parameter, we assume the validity of the
Gutenberg-Richter (G-R) law:

l0 x; y;mð Þ ¼ m0 x; yð Þb�bðm�moÞ; ð1Þ

where l0(x, y, m) is the spatial magnitude density
distribution of earthquakes; m0(x, y) is the spatial density
of earthquakes of magnitude equal to or larger than m0, the
minimum detectable magnitude; b is a characteristic
parameter of each seismogenic area, supposed to be
approximately independent of time and of the space
coordinates; b is linked to the well-known b parameter by
the relation b = b ln(10).
[6] Equation (1) treats aftershocks as if they were inde-

pendent and identically distributed random events. The
choice of m0 is not critical, provided that the set of data is
complete above it.
[7] In the computation of equation (1) we regard the

space density distribution m0(x, y) as a continuous, smooth
function of the geographical coordinates (x, y). It can be
obtained by a Gaussian smoothing of the catalog, following
the method introduced by Frankel [1995]. Integrated over x,
y and m, equation (1) gives the expected total number of
earthquakes in a catalog.
[8] It is widely recognized that the occurrence of a

seismic event has influence on the probability of occurrence
of new ones. In this paper we assume that this influence is
an effect of any earthquake upon all the subsequent ones, as
in the epidemic model (ETAS) introduced by Ogata [1988,
1998]. The epidemic model represents the seismicity as a
superposition of spontaneous and induced events. Hence the
expected rate density of earthquakes, taking into account the
influence of the previous ones, can be written as

l x; y; t;mð Þ ¼ frl0 x; y;mð Þ þ
XN
i¼1

H t � tið Þli x; y; t;mð Þ; ð2Þ

where fr is a factor called the ‘‘failure rate’’ (i.e., a measure
of the proportion of events that can be considered truly
independent and constitute the ‘‘spontaneous background
seismicity’’ of a catalog), l0(x, y, m) is expressed as in
equation (1), ti is the occurrence time of the earthquakes, the
total number of which is N, H(t) is the step function such as
H(t) = 0 for t � 0 and H(t) = 1 for t > 0, and li(x, y, t, m) is
the kernel of the previous earthquakes. The first and the
second terms on the right side of equation (2) represent the
‘‘independent’’ and the ‘‘induced’’ seismicity, respectively,
in probabilistic terms, without any means of distinguishing
the real nature of each individual event. The rate density
corresponding to any time-space point is, in general,
constituted by the superposition of both components.
[9] We hypothesize that the contribution of any previous

earthquake (xi, yi, ti, mi) to the rate density of the subsequent
earthquakes is decomposable (for t > ti) into three terms,
representing the time, space and magnitude density distri-
bution, respectively, as

li x; y; t;mð Þ ¼ Kh t � tið Þf x� xi; y� yið Þbeami�bm; ð3Þ

where K and a are constant parameters, while h(t) and
f (x, y) are the time and space distributions, respectively.

Equation (3) implies that aftershocks are basically a
nonstationary process.
[10] For the time dependence, we adopt in a general way

the so-called modified Omori law [Utsu, 1961; Utsu et al.,
1995], which is to be applied to any of the subsequent
earthquakes with respect to all the previous ones:

h tð Þ ¼ p� 1ð Þc p�1ð Þ t þ cð Þ�p
p 6¼ 1ð Þ; ð4Þ

where c and p are characteristic parameters of the process,
and the expression is normalized so that

R
0
1h(t)dt = 1. In

this context, equation (4) is used not only for first
generation aftershocks but also for multiple generations.
[11] We model the spatial distribution of the induced

seismicity by a function f (x � xi, y � yi) that has circular
symmetry around the point of coordinates (xi, yi) and is
normalized to 1. We consider two different expressions of
this kind. In polar coordinates (r, q), the first of these
expressions can be written as

f r; qð Þ ¼ 1

2ps2
e �r2=2s2ð Þ; ð5aÞ

where r is the distance from the point (xi, yi) and s is a free
parameter determining the fall off of the induction effect
with distance. The second distribution is

f r; qð Þ ¼ q� 1ð Þ
p

d2 q�1ð Þ

r2 þ d2ð Þq ; ð5bÞ

where d and q are two other free parameters of the process.
In the right side of both equations (5a) and (5b), q does not
appear explicitly because of the isotropy of the models, but
the normalization has been done by integration of this
parameter from 0 to 2p. In our study the spatial parameters
s and d are independent of the magnitude of the inducing
earthquake. In this respect it can be considered that, in the
context of this study, the typical location error of the
epicenters (of the order of a few kilometers) is larger than
the presumable linear size for most of the sources (M < 5)
reported in the catalog.
[12] As to the dependence on the magnitude mi of the

previous earthquakes, in equation (3) we introduce a gen-
eralization of the Reasenberg and Jones [1989] hypothesis
that is coincident with our algorithm only if a = b. In this
particular case, parameter K has the meaning of the
expected number of induced events of magnitude equal to
or larger than mi.
[13] In this study, we consider four formulations of

equation (3), obtained by the combinations of the two
different choices for the spatial distribution and the two
hypotheses a = b or a 6¼ b: (1) spatial distribution given
by equation (5a) and a = b (free parameters: K, c, p, s, b),
(2) spatial distribution given by equation (5b) and a = b
(free parameters K, c, p, d, q, b), (3) spatial distribution
given by (5a) and a 6¼ b (free parameters K, c, p, s, a, b),
and (4) spatial distribution given by (5b) and a 6¼ b (free
parameters K, c, p, d, q, a, b).
[14] Case 1 reproduces the hypothesis adopted by

Console and Murru [2001]; cases 3 and 4 were already
examined by Ogata [1998]. We have also considered and
tested a version of the inverse power decay function [Ogata,
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1998, equation 2.4], where the parameter d depends on the
magnitude mi of the inducing earthquakes through a. The
results for this model are not reported here because they are
similar, but not better, of those obtained from our model 4.
In the set of free parameters we have not included the
failure ratio fr. This is because fr is constrained by the
condition that the integral over time of l(x, y, t, m) given by
equation (2) must be equal to the time-independent density
distribution l0(x, y, m). This condition makes fr dependent
on the other parameters of the model.
[15] Each set of parameters has to be adjusted in order to

reach the best fit of the respective model with real obser-
vations. The procedure adopted in this study reflects that
already introduced by Ogata [1998] and used by Console
and Murru [2001]. It consists in searching for the maximum
of the log likelihood function of a realization of seismic
events described by a catalog {xj, yj, tj, mj, j = 1, . . ., N}:

ln L¼
XN
j¼1

ln l xj; yj; tj;mj

� �
V0

� �
�
Z

X

Z

Y

Z

T

Z

M

l x; y; t;mð Þdxdydtdm;

ð6Þ

where V0 is an arbitrary coefficient whose dimensions are
equal to those of the inverse of the rate density l(xj, yj, tj,
mj), and X, Y, T and M denote the range of integration of the
four space, time and magnitude variables. Equation (6) is
easily implemented in practice, given that the model allows
the computation of the density function l(x, y, t, m) in
space, time and magnitude. The first term on the right-side
member of equation (6) is the sum of the logarithms of
density functions computed at the locations of all the
observed earthquakes. The second term is the total expected
number of earthquakes for the given model. The expected
number depends only on the model, not on particular
events. Depending on the arbitrary choice of V0, the specific
value of ln L does not have any absolute meaning. Only the
difference of values computed for the same catalog with
different models gives some information [Kagan and
Knopoff, 1977; Kagan, 1991; Vere-Jones, 1998]. In the
following, the results are given in terms of the ratio
(performance factor) between the likelihood of the observa-
tions under a given model and the likelihood of the same
observations under a reference model [see, e.g., Evison and
Rhoades, 1997].

3. Application to the Italian Seismicity

[16] The database used in this study is the catalog of
shallow seismicity collected by the Istituto Nazionale di
Geofisica e Vulcanologia (INGV) (formerly ING) from
1 July 1987 to 31 December 2000. We considered the
earthquakes contained in a polygonal area surrounding
the Italian coasts and borders (Figure 1), within which the
National Seismological Network has provided reliable
locations. Our tests showed that this catalog is complete
for magnitude equal to 2.0 and larger, including a total
of 7851 events (Figure 2). The maximum likelihood value
for the b parameter of the Gutenberg-Richter frequency-
magnitude relation is 0.997 ± 0.011, with the error computed
using the formula suggested by Shi and Bolt [1982].
[17] The space density distribution m0(x, y) of earth-

quakes was obtained by interpolation from a grid of 100 	

120 cells, each having a size of 10 	 10 km, centered on
the point 42�N, 13�E. A smoothed value is computed at
each node by the average of the number of earthquakes
observed in the neighbor cells, weighting each cell by a
Gaussian function decreasing with the distance between its
center and the node [Frankel, 1995]. The optimal param-
eter of 20 km for the Gaussian function was obtained by
means of the criterion outlined by Console and Murru
[2001]. It consists in a trial and error search for the
maximum likelihood of a subcatalog containing about half
of the total number of events, under the model obtained
from the other half.
[18] The b (or b) parameter was not included in the sets of

those obtained by the best fit procedure. We decided to keep
its value fixed (b = 0.997), as it was obtained by the analysis
of the entire catalog. This choice is rigorously justified only
for models 3 and 4, but not exactly for models 1 and 2
because in these latter cases, b controls not only the overall
magnitude distribution but also the proportion between
spontaneous and induced events.
[19] The actual number of free parameters to be esti-

mated is 4, 5, 5, and 6 for the different models described
as cases 1, 2, 3, and 4 respectively. The maximum like-
lihood estimation of these parameters, was performed by a
Newtonian estimation procedure described by Console and
Murru [2001]. The final values of the parameters obtained
by this procedures together with the respective values of
the failure rate fr and of the performance factors relative to
the time-independent Poisson process, are reported in
Table 1.
[20] The maximum likelihood deriving from the best fit

denotes the better performance of models 2 and 3 (five
free parameters) with respect to model 1 (four free
parameters), and the overall best performance of model 4
(six free parameters).

4. Prospective Test of the Hypotheses

[21] The difference between the various values of the log
likelihood ratios reported in Table 1 is of the order of
hundreds. In light of the Akaike information criterion
[Akaike, 1974; Sakamoto et al., 1983], one could easily
conclude that this difference is highly significant even
taking into account the different number of free parameters
in the models. However, we follow the opinion that an
objective test of any forecasting hypothesis should be carried
out with no free parameters and on a data set independent of
that used for the formulation of the hypothesis itself
[Rhoades and Evison, 1989]. In this work, we carry out
a prospective test on the more recent data set collected
by the Italian Seismological Network, from 1 January to
31 December 2001. This data set consists of 322 epicenters
of shallow earthquakes with magnitude larger than or
equal to 2.0, within the same geographical area selected
for the best fit of the four models. Figure 3 shows the
epicentral map of these earthquakes. It must be noted that
the number of 322 earthquakes is smaller than the average
rate of 582 earthquakes per year characterizing the whole
1987–2000 data set.
[22] Having fixed the parameters of the four models on

the values given in Table 1, the likelihood of the 2001
observations was computed under each of the hypotheses
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and divided by the likelihood obtained under the Poisson
model. The results are given in Table 2.
[23] The likelihood ratios reported in Table 2 have been

computed without taking into account the effect of earth-
quakes occurred prior to 2001. However, no earthquake
larger than magnitude 4.5 occurred in the study area in
2000.
[24] The results of this test are in agreement with those

obtained from the best fit procedure, because the log
likelihood increases from model 1 to model 4. Table 3
shows a comparison within pairs of models in terms of their
relative performance factors.. The comparison indicates that
models 2 and 4 (inverse power space distribution) compared
respectively with models 1 and 3 (Gaussian space distribu-

tion) give a performance factor of the order of 5 	 106 and
1.5 	 109. Moreover, models 3 and 4 (a 6¼ b) give a
performance factor of the order of 6 	 1030 and 2 	 1033

compared with models 1 and 2, respectively (a = b).
[25] Are these results statistically significant? This can

be answered by means of Monte Carlo simulations [Evison
and Rhoades, 1997]. For instance, for the first case of
Table 3, we built up 1000 synthetic catalogs under
model 1 and computed the likelihood of both models 1
and 2 for each of them. The simulation procedure used in
this test follows the steps proposed by Ogata [1998]. The
result is that not even in one of these 1000 simulations the
performance factor is larger than the observed one. As
shown in Table 3, there is less than 1% of chances that we

Figure 1. Epicenters of the earthquakes (M 
 2.0 and h � 70 km) located by the National
Seismological Network in Italy and surrounding areas from July 1987 to December 2000. The origin of
the rectangular coordinates is in the point 42�N, 13�E. The size of the symbols is scaled with magnitude
from 2.0 to 5.5. The rectangular coordinates (in km) of the corners of the polygonal area are �500, 500;
0, 600; 100, 500; 200, 300; 400, 100; 500, �200; 500, �400; 300, �600; 0, �600; �200, �400; �200,
�100; �400, 100; �500, 200.
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make the mistake of rejecting the true model for the wrong
one in any of these tests.

5. Discussion

[26] The hypothesis adopted in this study is centered on
the assumption that all the earthquakes in the catalog belong
to a unique family of events characterized by the same b
value, and their magnitude is chosen randomly from the
Gutenberg-Richter magnitude-frequency distribution
[Felzer et al., 2002]. The second important piece of the
hypothesis is that all earthquakes interact through an epi-
demic process modeled by the magnitude of previous events
and by the space and time distance from the previous
earthquakes separately. In this way, no distinction is made
between different modes of earthquake clustering. Defini-
tions as foreshocks, aftershocks, main shocks, swarms, etc.,
are not necessary in this context. We mention some of them
only for shortness of language. For instance, foreshocks can
be regarded just as events that triggered a subsequent event
that happened to be bigger than the triggering event [Shaw,
1993; Felzer et al., 2002]. The observations carried out in
Italy for 14 years provide the database used for the best fit
of the free parameters characterizing four different models.
One year of independent data (recorded in 2001) appears a
suitable duration for validating one of the models with
respect to the others.
[27] First, we notice that, in agreement with Cao et al.

[1996], Ogata [1998], and Kagan and Jackson [2000], the
hyperbolic law expressed as in equation (5b) fits the data
better than the normal distribution equation (5a) previously
used by Console and Murru [2001]. For both distributions
we obtained similar values of the characteristic parameters s
and d (ranging from 3 to 4 km: close to the order of
magnitude of the typical location errors for the events
reported in the catalog). The initial choice of the normal
distribution had been made because it includes just one free
parameter (s). However, it can be recalled that the form of
equation (5b) with q = 1.5 would be in agreement with the
stress falloff by 1/r3 expected from a physical model of

stress change caused by a point source or a circular crack in
an elastic medium [Shaw, 1993; Dieterich, 1994]. We may
notice also how the two distribution equations (5a) and (5b),
once the proper values of the free parameters of Table 1 are
introduced, have a bell shape fairly similar to each other
(Figure 4). Nevertheless, the adoption of the latter allows a
significant improvement of the likelihood. As previously
mentioned, the introduction of the alternative inverse power
model [Ogata, 1998 equation 2.4], found the best fitting for
Japanese data sets, does not produce any significant im-
provement in the case if the Italian data. A possible
explanation of this apparent discrepancy could be found
in the different magnitude thresholds used in the analysis for
these two countries: ranging from 4.0 and 6.0 for Japan and
only 2.0 for Italy. So, the location error dominates the short-
range behavior in the Italian catalogue, while the real source
size makes the dependence on magnitude relevant for the
Japanese data.
[28] An even more substantial improvement of the model

has been achieved by having let a and b assume different
values in equation (3). It has been observed that a, mostly
ranging between 0.2 and 3.0, is a measure of the efficiency
of a shock with a certain magnitude in generating its
induced activity [Utsu et al., 1995]. A swarm-like activity
is characterized by a small a value, while a typical main
shock-aftershock activity is related to a large value of this
parameter. As noted above, this is in contrast with the
Reasenberg and Jones [1989] hypothesis of scale invari-
ance, followed also by Felzer et al. [2002]. As the value of
a fitting the Italian data is approximately half of the
correspondent value of b, this difference is not negligible.
It implies that the production of events induced by a shock
of magnitude one unit larger than another, rather than about
ten times larger, is only slightly more than three times (ea)
larger than those induced by the smaller earthquake. Taking
into account the magnitude distribution of earthquakes, we
may infer that small earthquakes have a substantial role in
the triggering process. Therefore the late activity in an
aftershock sequence, besides being produced by the main
shock only, is largely due to aftershocks having occurred
earlier. This fact is depicted in Table 4, showing the
expected number of events induced by an earthquake of
given magnitude occurred at time t = 0, within 15 km and
different time intervals. The computation has been carried
out using the parameters of model 4 in Table 4 with the

Figure 2. Cumulative frequency-magnitude plot of the
earthquakes shown in the map of Figure 1.

Table 1. Optimal Parameters of the Models for Earthquake

Clusteringa

Parameter Model 1 Model 2 Model 3 Model 4

K 0.0742 0.0768 0.0294 0.0316
c, days 0.0103 0.00994 0.00684 0.00680
p 1.102 1.103 1.054 1.058
s, km 3.85 - 3.54 -
d, km - 3.66 - 3.07
q - 1.945 - 1.828
a - - 1.009 0.974
fr 0.495 0.473 0.409 0.382
ln (L/L0) 15,138.45 15,600.35 16,826.15 17,398.85

aINGV catalog 1 July 1987 to 31 December 2000, Nev.7851; average
rate is 582 events per year, Mc 
 2.0.
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background seismicity estimated as the average of central
Italy. The results represent the average of numerous
independent simulations. The values reported in Table 4a
have been estimated limiting the computation of the rate
density only to the events induced by the main shock,
modifying the models used, e.g., by Reasenberg and
Jones [1989] and Console et al. [1999] with the inclusion
of the independent a parameter. This causes a decrease of
probability of induced events with magnitude. This proba-

bility would be independent of magnitude for a = b.
Table 4b, obtained by a epidemic model with the influ-
ence of all the aftershocks on subsequent aftershocks,
shows the substantial effect of secondary induced events
on the resulting seismicity. The comparison of the results
in Table 4a with the corresponding results in Table 4b
shows that 100 days after the main shock, about 50% of
the aftershock activity is imputable to a secondary effect
of previous aftershocks [Felzer et al., 2002].

Figure 3. Epicenters of the earthquakes (M 
 2.0 and h � 70 km) located by the National
Seismological Network in Italy and surrounding areas from January 2001 to December 2001. The origin
of the rectangular coordinates, the polygonal area, and the size of the symbols are the same as in Figure 1.

Table 2. Results of the Test on the 2001 Data

Model ln (L/L0)

1 510.83
2 526.21
3 581.71
4 602.86

Table 3. Logarithm of the Performance Factor for the Tests on the

2001 Data

Observed Performance Factor Significance Level, %

lnL2-lnL1 15.38 <0.1
lnL4-lnL3 21.15 <0.1
lnL3-lnL1 70.88 0.6
lnL4-lnL2 76.65 0.4
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[29] Our result is in agreement with those found by
Ogata [1998] for moderate earthquakes in central and
western Honshu Island (Japan). A physical interpretation
might be that the productivity of induced shocks is
proportional to the linear dimensions of the fault that
ruptured during the inducing event, rather than to its total
area. This is consistent with the idea that most aftershocks
are produced in the high stress region surrounding a fault
that is outside the edges of the fault, rather than inside it
(A. Helmstetter, Stress triggering driven by small earth-
quakes?, submitted to Geophysical Research Letters,
2002).
[30] As to the time dependence of seismic activity, it seems

that the modified Omori law expressed in equation (4) is well
fitted by the data with c of the order of 0.01 days and p close
to 1.1. The value of c is close to the minimum in the range
of those reported by previous investigations [see, e.g., Utsu
et al., 1995]. In connection with this point, we make the
comment that here c is computed from a model taking
into account the influence of each single event on the
following ones, while often it is derived by the analysis of
the whole aftershock sequence related to a single main
shock. Moreover, it has been noted that the determination
of an accurate c value is made difficult by the problem of

incomplete detection of small aftershocks shortly after the
main shock [Utsu et al., 1995].
[31] With regard to p, our determination is consistent

with a number of previous observations. It usually falls in
the range 0.9–1.8 [Utsu et al., 1995]. A value close to 1
is justified by a theoretical approach [Shaw, 1993;
Dieterich, 1994]. In our model p < 1 is unrealistic, because
it would lead to the instability of the process. However,
Sornette and Sornette [1999] demonstrated that it is
possible to observe p < 1 (over short periods of time) as a
result of looking at combined secondary aftershocks
(with all of the direct sequences following Omori’s law
with p > 1).

6. Conclusions

[32] We found that the stochastic model of earthquake
clustering expressed by equations (3), (4), and (5b), partly
supported by theoretical arguments, provides a fit of the
data better than other models considered here. A notable
result concerns the dependence of the aftershock productiv-
ity on the magnitude of the inducing event that is expressed
through an exponential law in which the magnitude is
multiplied by a coefficient a significantly smaller than
the b parameter of the G-R law. With the acceptance of
model 4 against the other three considered in this study
(Tables 2 and 3), still maintaining the concept of earthquake
self-similarity in magnitude distribution, we abandon the
simple idea that the rate of aftershocks is determined only
by the magnitude difference between the main shock and its
aftershocks [e.g., Kagan and Knopoff, 1987; Reasenberg
and Jones, 1989; Davis and Frohlich, 1991; Console and
Murru, 2001; Felzer et al., 2002].
[33] In order to compare how the model fits the exper-

imental data, we show in Figure 5 a comparison made on
the real seismic sequence occurred in central Italy few
years ago. This sequence has been characterized by multi-
ple main shocks and migration of activity. Figure 5a shows
the number of earthquakes with magnitude equal to or
larger than 2.0 observed in a circular area of 15 km radius
centered on the epicenter of the M5.6 main shock occurred
on 26 September 1997, in intervals of 12 hours. Figure 5b
shows the expected number of earthquakes with the same
magnitude and within the same radius and time intervals.
It has been computed by model 4 with the maximum
likelihood parameters of Table 1. The computation has been
carried out dividing each time interval of 12 hours in
10 steps of 1.2 hours, and estimating the theoretical
occurrence rate density at the beginning of each time step,
making use of the data included in the previous steps. The
total number of observed events is larger than the theo-
retical values. This can be ascribed to the fact that our

Figure 4. Dependence of the rate density of induced
earthquakes versus the distance from the epicenter of the
inducing event. Curve a is for normal distribution given in
equation (5a), and curve b is for the inverse power law
given in equation (5b).

Table 4a. Probability of Occurrence of an Earthquake of

Magnitude Equal to or Exceeding the Magnitude of Another

Earthquake of Magnitude M Within 15 km Distance and a Time

Interval TAfter This Earthquake, Without Taking Into Account the

Effect of Subsequent Events

T M = 3 M = 4 M = 5

1 0.0440 0.0148 0.0049
10 0.0616 0.0204 0.0068
100 0.0940 0.0271 0.0086

Table 4b. Same as Table 4a but With the Probabilities Computed

Also Taking Into Account the Induction by Subsequent Events

T M = 3 M = 4 M = 5

1 0.0587 0.0202 0.0067
10 0.0928 0.0317 0.0109
100 0.1468 0.0476 0.0164
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model (and in particular the K value), fitted on the whole
seismicity of Italy, underestimates the real number of
induced events for single episodes characterized by an
explosive aftershock activity. Taking into account this
circumstance, the qualitative trends of the two plots can
be judged quite similar.
[34] The model considered in this study is subject to

improvements that should take into account regional varia-
tions of the free parameters and should eventually allow the
adjustment of the parameters on the basis of real time
observations. Nevertheless, we retain that the methodology
described in this paper is practicable for a possible appli-
cation in earthquake risk mitigation.
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