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Statistical Models for Earthquake Occurrences and
Residual Analysis for Point Processes

YOSIHIKO OGATA*

This article discusses several classes of stochastic models for the origin times and magnitudes of earthquakes. The models are
compared for a Japanese data set for the years 1885-1980 using likelihood methods. For the best model, a change of time
scale is made to investigate the deviation of the data from the model. Conventional graphical methods associated with stationary
Poisson processes can be used with the transformed time scale. For point processes, effective use of such residual analysis
makes it possible to find features of the data set that are not captured in the model. Based on such analyses, the utility of
seismic quiescence for the prediction of a major earthquake is investigated.

KEY WORDS: Akaike information criterion; Epidemic-type models; Conditional intensity; Likelihood; Marked point process;

Seismic quiescence; Trigger models.

1. INTRODUCTION

It is widely accepted that some time after the occurrence
of a major earthquake the aftershock activity dies off and
background seismicity surpasses the aftershock activity.
Prior to the next major earthquake, preseismic quiescence
and then foreshocks are expected to appear in the focal
region (Mogi 1968). It is not easy, however, to identify
foreshocks before the occurrence of a main shock. In par-
ticular, foreshocks tend to be less numerous than after-
shocks. Thus the seismic quiescence and related seismic
gap have been studied by many seismologists for the pur-
pose of earthquake prediction [e.g., see Kanamori (1981)
and some other authors in the same volume].

Some have questioned the usefulness of seismic quies-
cence and suggested that it can be considered a mere result
of the decaying activity of aftershocks from the last major
earthquake (see Lomnitz 1982; Lomnitz and Nava 1983).
The latter paper discusses the similarity between certain
observed earthquake sequences and sequences featuring
seismic quiescences generated from stochastic models that
are based on simple statistical assumptions such as the
Gutenberg—Richter law of magnitude frequency, Omori’s
decaying frequency law of aftershocks, and Bath’s law.

To investigate this issue we have to investigate seismic
quiescence by means of a quantitative comparison with
background seismicity and aftershock activity. There have
been some attempts to develop statistical techniques for
the definition and detection of quiescence. For example,
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Habermann and Wyss (1984) developed a statistical test
procedure to detect quiescences for seismic activity with
data from which the effect of aftershocks is removed. Af-
tershocks, however, constitute the greatest proportion of
shocks in an earthquake catalog, and there have been
many detailed studies on aftershock sequences (e.g., see
Utsu 1969, 1970, 1971, 1972). If these are effectively con-
sidered in the analysis, aftershocks can give us useful in-
formation for understanding the whole cycle of seismic
activity (see Matsu’ura 1986; Ogata and Shimazaki 1984;
Okada 1978).

This article selects a statistical model for the standard
activity of earthquake series by comparing several possible
models using likelihood methods. In the next section some
possible stochastic models for seismic activity derived from
empirical studies, mainly of aftershock statistics, are re-
viewed and discussed. In Section 3.1 an earthquake data
set for which the models seem applicable is considered.
Model comparisons, using this data set, are presented in
Section 3.2.

Another feature of this article is the systematic use of
a new kind of residual analysis for point process data,
described in Section 3.3, which involves a change of time
scale that depends on the conditional intensity rate of the
estimated model. The model selected fits the data well
enough that the residuals reveal certain events more clearly
than the original data. This makes possible a precise quan-
titative definijtion of seismic quiescence in Section 4 as well
as the detection of a stretch of outliers. Then it is dem-
onstrated that seismic quiescence has some utility for sta-
tistical prediction of a major earthquake. The final section
contains some additional discussion and some conclusions.

2. STATISTICAL MODELS FOR THE
EARTHQUAKE PROCESS
21 Empirical Studies on Aftershock Statistics

The statistical properties of the occurrence of after-
shocks have long been some of the main objects of seis-
mological studies in connection with the processes of
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earthquake generation. Distributions of aftershocks in
time, space, and magnitude are usually included in a gen-
eral survey of destructive earthquakes. In this section some
studies of aftershock statistics are reviewed briefly. Based
on this review, some plausible point process models are
subsequently developed to describe the standard activity
of earthquake series.

The frequency of aftershocks per unit time interval (one
day, one month, etc.) is well described by the modified
Omori formula (Utsu 1961),

n(t) = K/(t + c) 1)

where ¢ is the time since occurrence of the shock. K de-
pends on the lower bound of the magnitude of aftershocks
counted in n(¢), whereas p and c are known to be inde-
pendent of this choice of lower bound. Utsu (1969, 1970)
extensively investigated the aftershock sequences of this
century’s earthquakes in Japan. Plotting observed n() ver-
sus time ¢ on a log—log-scaled plane, he showed that the
graph tends to a straight line whose slope is an estimate
of p. With such plots, for example, Utsu (1969) discovered
the remarkable fact that the aftershock activity of the Nobi
earthquake of 1891 continued for at least 80 years with a
continuously decreasing rate of occurrence.

It is known empirically that the magnitudes of the earth-
quakes follow roughly an exponential distribution.

Pr{Mag > M} = e M, 2)

In the seismological literature this relationship, called Gu-
tenberg—Richter’s law of magnitude of frequency, is most
often written in the form

long(M) =a — bM, (3)

where F(M) refers to the frequency of earthquakes with
magnitudes not smaller than M [see Gutenberg and
Richter (1944); see also Fig. 3 later in this article]. The
constant b, called b value, is then related to § by the
equation f = b - log,10 and commonly takes a value near
unity.

Utsu (1971, pp. 420-427) studied theoretically the re-
lation between the size of aftershock activity and the mag-
nitude of the main shock, based on the aforementioned
law of magnitude frequency (3) and some theoretical prop-
erties of order statistics. For a sequence of aftershocks
triggered by a main shock with magnitude M, he found
the relation

(K, c, p; parameters),

(4)

where A is the total number of aftershocks in the sequence
and ais a constant. From this and the magnitude frequency
law (2) for the main shocks, the frequency distribution of
A takes the form

f(A) = constant A4

logwcA = aM + constant,

©)

for some positive q. Empirical evidence in support of (5)
was provided by plotting the logarithm of the cumulative
frequency distribution of the number of aftershocks versus
the magnitude of the corresponding main shock (Utsu 1971,
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fig. 133). For seismological readers particularly, I point
out that (4) is similar in form to some widely used empirical
formula like that given by Utsu and Seki (1955),

lOng =1.02M - 4.0, (6)

relating the aftershock area S(km?) and the magnitude M
of the main shock for shallow earthquakes in Japan and
its vicinity.

Combining (1) and (4), Utsu (1970, p. 229) gave the
standard equation for the rate of occurrence of aftershocks
having magnitude M, and larger, ¢ days after a large shal-
low earthquake of magnitude M,:

n(f) = 108M-M)-183/(t 4 3)13

™
per day.

For constructing statistical models of earthquake oc-
currence, some authors (Lomnitz 1966; Lomnitz and Nava
1983; Utsu 1972) assumed that there was no detailed caus-
ality or interaction between the occurrence times of af-
tershocks, so the time sequence of aftershocks could be
treated as a nonstationary Poisson process. Vere-Jones
(1975) suggested that this assumption is mainly due to the
analysis of Jeffreys (1938), in which daily numbers of af-
tershocks of the Tango earthquake of 1927 were tested by
evaluating chi-squared statistics to establish the indepen-
dence of the occurrence numbers. A similar result was ob-
tained in Lomnitz and Hax (1966) by analyzing autocor-
relations. I will argue, however, that these analyses do not
really establish the independence of the precise times at
which the aftershocks occur. Furthermore, the so-called
secondary aftershocks, or the aftershocks of an aftershock
(see Utsu 1970, pp. 214-216), are not explained by such
models. According to Ogata (1983) the aftershocks of the
Tango earthquake had at least two secondary sequences.
In addition, a few analyses suggesting the interdependence
of aftershocks can be obtained by using the theory of runs
tests (Utsu 1970, pp. 217-229).

Although the independence of the occurrence of main
shocks has been assumed in many models, some papers
discuss the migration of large earthquakes and the causal
relationships between seismic activity in different geo-
physical regions (Mogi 1968, 1973; Ogata and Katsura
1986; Utsu 1975). Many such reports have been given
constantly at the meetings of the Seismological Society of
Japan.

2.2 Trigger Models

The model discussed by Lomnitz and Nava (1983) is
related to the trigger model suggested by Vere-Jones and
Davies (1966), which Vere-Jones (1970) described as a
special case of the Neyman—Scott clustering model. This
model assumes a series of primary events (main shocks)
distributed completely randomly in time. Each of these
primary events may generate a secondary series of events
(aftershocks). It is assumed that the conditional proba-
bility that an aftershock (of magnitude above a certain
level) will occur in the small time interval (¢, ¢t + dt),
triggered by a main shock at time ¢y, is equal to g, () dt
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with
o,(t) =& ft — 1),
— 0’

t= 1

t<t,

®

where f(f) is a normalized function; that is, [ f(¢) dt =
1 and ¢ is the average number of secondary events pro-
duced by a primary event at #,.

Vere-Jones and Davies (1966) suggested that the inverse
power type of decay function

f@® = (p = Der7t(c + 1), )

which arises from normalizing (1), gives a better fit than
the negative exponential function. They assumed further
that ¢ itself is a random variable with finite mean and
variance, probably as a technical requirement for the es-
timation of the parameters using the second-moment prop-
erties. In Lomnitz and Nava (1983), £ is taken to be pro-
portional to M,, — M,, where M,, is the magnitude of the
main shock and M, is the cutoff magnitude, which together
with the law of magnitude frequency implies that £ has a
negative exponential distribution. In this article, I will con-
sider only a restricted form of trigger model, which will
be described later.

23 Epidemic-Type Model

Another type of model appeared in applications to pop-
ulation genetics. Kendall (1949) introduced an age-de-
pendent birth and death process such that for any indi-
vidual of age x alive at time ¢, for the next interval (¢, ¢t +
dt) there are probabilities g(x) dt of a birth and h(x) dt
of a death, independently for each individual. Hawkes
(1971) considered the self-exciting process, which is a birth
process [i.e., h(x) = 0] allowing immigration at a rate u
per unit time. He defined the process by means of the
conditional intensity rate

A(t) = E[dN(¢) | history of N(s) at time ¢]/dt
lim A-!

A0

X Pr{event in (¢, t + A) | history of
N(s) at time ¢}
t
=u+Zat 1) =u+ [ g~ s5)aNe),

(10)

where N(¢) is the cumulative number of events, {¢;} in (0,
t]. This process may also be viewed as a cluster process,
different from the Neymann—Scott type, in which the pro-
cess N, (¢) of birth times of cluster centers [see Eq. (18)]
is a Poisson process of rate u formed by the arrival of
immigrants. Associated with each event of N,(¢) we have
a cluster of subsidiary events formed by the births of all
of the descendants of all generations of the immigrant
(Hawkes and Oakes 1974). One of the differences between
this model and the trigger model is that the latter includes

"

only the first generation offspring whereas in the former

all events have the possibility of possessing offspring.
Extending (10) to a multivariate point process, {¢""},

Hawkes (1971) also defined the mutually exciting model

4;(t) = E[dN;(¢) | histories of N,,(s)
for all m at time ¢]/dt

=+ 2 D gimt — 1)
m <t

t
—p+ 3 fo gm(t — ) dNu(s) (10
for the discrete magnitude values of j and m. If we assume
that the simplest forms g;,.(tf) = c(m)g;(t) and consider
the superposition N(f) = 2,,N,(f) of the point process
components, then the conditional intensity (f) = 2,4;(¢)
is given by

M) = p+ X c(m)g(t — 1), (12)

1<t

where ¢, is the occurrence time of the superposition N(¢),
m; is the corresponding magnitude of #;, and g(f) = Z,g;(?).
Further, 4 = 2Zu,, can be considered as a base rate that
prevents the process from dying out. The model (12) co-
incides with the tagged Klondike-type model described in
Lomnitz (1974) for earthquake series {(¢;, m;)} with m; =
M,, where M, is the cutoff magnitude. Lomnitz suggested
the use of

g(t) = ae™ (13)

in view of Boltzman’s theory of elastic aftereffect. Here I
would also like to consider the model

g(®) = K/(t + c)?, (14)

-which corresponds to (1). A technical extension of (13),

8() = 3 aute, (15)
k=1
is proposed in Ogata and Akaike (1982) and also in Vere-
Jones and Ozaki (1982). The pioneering application of the
model (8) (including a trigger model as a special case) to
earthquake data was carried out by Hawkes and Adam-
opoulos (1973), where a mixture of two exponentials is
considered as an extension of (10) and a certain approx-
imated log-likelihood is used to fit the model.
For the c¢(m) in (12) I propose the use of

c(m) = efm—M) (16)

rather than f(m — M,) as given for £ in (8) by Lomnitz
and Nava (1983), since (16) seems to be consistent with
(4)—(7) for the descendants of the first generation (primary
aftershocks). The parameter § here measures the effect of
magnitude in the production of descendants and is useful
in characterizing the earthquake sequences quantitatively
in relation to the classification into seismic types made by
Mogi (1963) and Utsu (1970) (see also Ogata 1987). For
example, earthquake swarms have small # values, and a
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value of # around 2 might be used as a standard for the
aftershock activity in Japan and its vicinity [see Eqgs. (6)
and (7)].

2.4 Parameterization of the Models

To calculate log-likelihoods we need to describe the
models in terms of the parameterized conditional intensity.
Here a class of competitive models is summarized in such
terms. First a unified form for the epidemic type of models
is provided, as follows:

MO =+ 3 gt = e

1<t
=u+ fw f gt — s)ef" =M dN(s, m), (17)
M, Jo

where A(?) is the conditional intensity for the occurrence
times of the point process, M, is the cut off magnitude,
and dN(s, m) gives mass 1 to each shock (¢;, m;).

Thus the parametric models (17) will be compared, with
g(t — s) defined by (14) or by (15) for integer values of
x [(13) is a special case in an interval]. In addition, we can
examine the case in which f = 0 to determine whether
the magnitude really affects the cluster size of the corre-
sponding aftershocks; see also the last paragraph in Sec-
tion 2.3.

Now I motivate the “restricted” trigger models, which
will be considered subsequently. The estimation and com-
parison among the original trigger models was carried out
by the methods using only second-moment properties, such
as goodness of fit of some graphical statistics like the vari-
ance-time curve, the hazard function, the periodogram,
and so on (see, e.g., Vere-Jones 1970; Vere-Jones and
Davies 1966). The actual likelihood of such Neyman-Scott
types of cluster models can only be calculated by an ex-
traordinarily complicated computation allowing all possi-
ble choices of ¢; for cluster centers (see, e.g., Baudin 1981)
unless each shock (¢;, m;) is identified in advance as a main
shock or aftershock (foreshocks here are included in main
shocks). The conventional approach to such identification
is usually based on the observation of spatiotemporal plots.
When the application of the trigger model is applied to
such an identified data set, we call the model a restricted
trigger model. That is to say, shocks are given by the de-
composition

dN(t, m) = dN,(t, m) + dN,(t, m), (18)
where N, and N, stand for the primary and secondary

events, respectively. Assuming that the distribution of main
shocks is stationary and random with rate x, we have

At) = p. (19)

Corresponding to (8), the conditional intensity rate of an
aftershock is given by

Adt) = j " f ‘g(t — 5)ePmM) AN (s, m)
M, Jo

= z g(t —_ tf)eﬂ("‘f_M'),

<t

(20)
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where M, is the reference magnitude. Thus the intensity
of the restricted trigger model is given by the combination
of (19) and (20),

At) = A1) + A.(0)

u+ r fl gt — s)ef"=M) 4N (s, m)
M, Jo

w3 gl = t)enni-m,

<t

(1)

Technically, (21) can be obtained from (17) by replacing
the quantities e”™~M") for aftershocks (7, M?) by 0. I will
compare (13) and (14) by using this restricted model and
the epidemic model.

3. ANALYSIS
31 The Data and Their Features

Utsu (1982) compiled and published a complete catalog
of earthquakes of magnitude 6 or more that occurred in
Japan and its vicinity from 1885 through 1980. This catalog
includes occurrence times, coordinates of epicenters,
depths, and some other information. In addition, each
shock has been classified as a main shock, a foreshock, or
an aftershock. This classification was not published in Utsu
(1982), but the author has kindly provided me with it
privately. Thus it is also possible for us to get the log-
likelihood values of the restricted trigger models (21), as-
suming that foreshocks are included in the category of
main shocks.

I will consider shallow earthquakes of less than 100 ki-
lometers depth with M = 6.0 in the polygonal region of
the Off Tohoku district, with vertices at the points (42°N,
142°E), (39°N, 142°E), (38°N, 141°E), (35°N, 140.5°E),
(35°N, 144°E), (39°N, 146°E), and (42°N, 146°E) (see Fig.
1), which is approximately between the lines of the Japan
Trench and the aseismic front proposed by Yoshii (1975).
This is a part of the northwestern Pacific seismic belt,
where the Pacific plate is subducting beneath northeastern
Japan in the Eurasian Plate, and is one of the most active
seismic areas in Japan.

In this area, 483 shocks with magnitude 6 or more have
occurred in the past 96 years, which means that about 5
such shocks occur on average each year. These data are
listed in Table 1. Figure 2 shows the plots of the occurrence
times of shocks with their magnitudes. The graphs of the
cumulative number of shocks and cumulative square root
of released energy are given in the same figure, where for
the energy released by a shock with magnitude M I have
used the relation E = 108+ (erg) according to Gu-
tenberg and Richter (1954). From Figure 2 we may assume
that the seismic activity here is stationary. An actual test
of this assumption is not easy, especially when the process
has long-range correlation (see Fig. 7). Nevertheless, sta-
tionary models are considered here in the prior belief that
such geophysical activity for a long time span should be
stationary. The magnitude distribution for this region is
shown in Figure 3, which clearly supports the Gutenberg—
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Figure 1. The Spatial Distribution of Large Earthquakes (M = 6.0) 1895-1980 in Japan and lts Vicinity. The sizes of the open circles correspond
to the sizes of the earthquakes. The data set for the polygonal region is considered.

Richter law of magnitude frequency [see (2) and (3), Sec.
2.1]. The fact that the graph of points associated with
magnitudes near 6.0 lies on the straight line suggested by
the Gutenberg-Richter law demonstrates to seismologists
that the catalog includes essentially all of the events of this
magnitude that occurred.

Using the intervals X;, X,, ... between successive
earthquakes, the log-survivor function, log P{X > x}, is
plotted in Figure 4. The estimated variance-time curve,
V(s) = var{N(t, t + s)}, is given in Figure 5. The empirical
plot of the intensity of the so-called Palm distribution,

m(s)
= Pr{eventin (t + s, ¢ + s + As) | event at t}/As,

for some small As, is given in Figure 6. All of these plots
suggest the strongly clustering nature of the occurrence
times of shocks. In particular, Figure 6, with confidence
error bounds assuming the Poisson model, suggests so-
called long-range correlation. Indeed, if we plot an esti-
mate of | my(s) — Ay | (4o is the mean intensity rate) on
a log-log scale, we get Figure 7, which suggests inverse

power decay of autocovariance at large time lags. This
may support (14) rather than (13) and (15) for the time
decay of the response function.

3.2 Comparison of Restricted Trigger Models
and Epidemic Models

To compare the epidemic models with the restricted
trigger models, I make use of likelihood analysis. Before
writing the likelihood of the models, let us consider the
assertion of Lomnitz (1982) and Lomnitz and Nava (1983)
that the distribution of magnitude frequency is not affected
by the occurrence times of shocks, especially just before
large shocks. This means that the time series of magnitudes
{m;} of earthquakes is independent of their occurrence
times {,;}. Based on this, the full likelihood of {(¢;, m;)}
can be written in the following form:

N N
II fi(m; | mU=0; ) [1 g;(t; | mU=D, ¢0-0;6), (22)
j=1 j=1

where t0) = (¢, ... ,¢) and m® = (my, ..., m;) and
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Table 1. Shallow Shocks (M = 6.0) in OFF Tohoku Area for 1885-1980

NO YEAR MO DY HR MN MAG C NO YEAR MO DY HR MN MAG C NO YEAR MO DY HR MN MAG C
1 1885 2 9 2 0 60 O 84 1908 1 15 21 56 69 0 167 1923 5 31 14 55 62 1
2 1885 6 11 9 20 69 0 85 1908 1 18 1 5 60 O 168 1923 6 2 2 24 73 0
3 1885 7 29 5 30 60 O 86 1908 2 5 21 7 60 O 169 1923 6 2 5 14 71 2
4 1885 10 30 20 30 62 0 87 1908 6 27 23 21 6.1 0 170 1923 6 7 2 36 62 2
5 188 12 7 13 2 63 0 88 1908 11 22 16 15 64 0 171 1923 9 2 18 49 63 2
6 1885 12 19 18 26 60 2 89 1909 9 17 4 39 68 0 172 1923 11 18 5 40 6.3 1
7 1886 4 13 5 44 63 0 90 1910 1 22 8 25 60 O 173 1923 12 27 23 39 64 0
8 1886 7 2 12 33 63 2 91 1910 5 9 18 53 6.0 1 174 1924 2 3 7 25 63 0
9 1887 5 29 0 50 64 0 92 1910 5 10 22 56 6.1 0 175 1924 5 31 21 2 63 1

10 1887 5 29 1 10 62 2 93 1910 5 12 12 22 60 2 176 1924 5 31 21 4 64 1
11 1888 2 5 0 50 71 0 94 1910 10 13 23 56 63 0 177 1924 8 6 23 22 63 0
12 1888 11 24 2 3 65 0 95 1912 1 4 4 4 6.1 0 178 1924 8 15 3 2 741 0
13 1889 3 3 6 42 66 0 96 1912 1 9 6 21 6.1 0 179 1924 8 15 8 27 67 2
14 1890 11 17 9 3 63 0 97 1912 6 8 13 4 66 0 180 1924 8 17 10 45 63 2
15 1891 4 7 9 49 67 0 98 1912 12 9 8 50 66 0 181 1924 8 17 11 10 66 2
16 1891 5 5 8 16 62 0 99 1913 2 20 17 58 69 0 182 1924 8 25 23 31 67 2
17 1891 7 210 20 19 70 0 100 1913 5 22 5 36 6.1 1 183 1925 2 7 2 N 60 O
18 1892 10 22 19 9 60 O 101 1913 5 29 19 14 64 0 184 1925 4 20 5 24 63 O
19 1894 2 25 4 18 68 0 102 1913 10 3 9 17 6.1 1 185 1925 6 2 14 18 64 0
20 1894 3 14 18 15 60 2 103 1913 10 11 18 10 69 0 186 1925 11 10 23 44 60 0
21 1894 8 29 19 55 66 O 104 1913 10 13 2 5 66 2 187 1926 4 7 4 33 63 0
22 1894 11 28 1 5 71 0 105 1914 2 7 15 50 68 0 188 1926 5 27 4 45 64 0
23 1894 12 1 18 37 63 0 106 1914 12 26 3 18 6.1 0 189 1926 9 5 0 37 68 0
1896 1 9 22 17 75 0 107 1915 3 9 0 29 68 0 190 1926 10 3 17 25 64 0
1896 i 10 5 52 60 2 108 1915 4 6 5 25 60 1 191 1926 10 19 9 29 62 0
1896 1 10 11 25 63 O 109 1915 4 6 14 32 62 0 192 1926 11 11 12 1 6.1 2
1896 2 28 19 42 6.1 2 110 1915 4 25 2 9 64 O 193 1927 1 18 6 58 64 O
1896 3 6 23 52 60 2 111 1915 5 28 2 26 60 2 194 1927 3 16 15 52 64 2
1896 4 11 23 0 60 2 112 1915 6 5 6 59 67 0 195 1927 7 30 23 18 64 0
1896 6 15 19 32 85 0 113 1915 7 9 7 2 64 0 196 1927 8 6 6 12 67 0
1896 6 16 4 16 75 2 114 1915 10 13 6 30 68 O 197 1927 9 30 16 38 63 O
1896 6 16 8 1 75 2 115 1915 10 14 4 43 62 2 198 1928 5 27 18 50 70 0
1896 7 29 17 44 6.1 2 116 1915 10 15 1 28 6.1 2 199 1928 5 29 0 35 67 2
1896 8 1 11 4 65 0 117 1915 10 15 3 40 63 2 200 1928 6 1 22 12 65 2
1896 9 5 23 7 65 2 118 1915 10 16 1 55 60 2 201 1928 6 2 7 6 60 2
1897 2 20 5 50 74 0 119 1915 10 17 0o 21 6.1 2 202 1928 8 -1 4 28 6.1 2
1897 2 20 8 47 70 2 120 1915 11 1 16 24 75 0 203 1929 3 15 10 57 60 2
1897 3 27 19 49 63 2 121 1915 11 1 16 50 67 2 204 1929 4 1 5 17 63 0
1897 5 28 21 22 69 2 122 1915 11 1 18 1 70 2 205 1929 4 16 9 53 63 0
1897 7 2 18 31 68 0 128 1915 11 2 0 43 62 2 206 1929 5 31 9 10 6.1 0
1897 7 29 22 45 60 2 124 1915 11 4 12 13 64 2 207 1929 6 27 1 49 6.1 0
1897 8 5 9 10 77 0 125 1915 11 18 13 4 70 2 208 1929 8 29 3 & 63 0
1897 8 6 8 48 63 2 126 1915 12 7 5 58 65 0 209 1930 5 1 9 658 66 0
1897 8 12 10 50 6.1 2 127 1916 3 18 9 58 66 O 210 1930 8 21 19 4 6.1 0
1897 8 16 16 50 72 2 128 1916 5 15 8 56 60 O 211 1931 3 9 12 48 76 0
1897 10 2 21 45 66 2 129 1916 7 17 3 16 68 0 212 1931 3 10 2 56 6.1 2
1897 12 4 9 18 62 2 130 1916 8 8 13 25 63 0 213 1931 6 238 15 14 63 1
1897 12 26 16 41 62 2 131 1916 8 21 28 38 62 2 214 1931 6 28 15 14 66 0
1898 4 23 8 37 72 0 132 1916 8 28 7 43 68 0 215 1931 8 18 14 40 60 2
1898 10 7 1" 0 60 O 1383 1916 11 24 13 4 66 O 216 1931 9 9 4 8 63 2
1898 12 16 1 47 60 2 134 1917 3 15 9 14 69 0 217 1932 6 22 9 36 62 0
1899 3 2 19 28 65 2 1365 1917 4 21 12 83 63 2 218 1932 6 30 3 16 60 O
1899 8 3 18 52 60 O 136 1917 6 14 22 22 6.1 0 219 1932 7 10 16 45 6.1 0
1900 3 12 10 34 64 0 137 1917 7 29 28 32 73 0 220 1932 9 3 20 58 66 0
1900 8 5 13 21 66 O 138 1917 11 16 0 2 60 O 221 1932 9 5 12 8 6.1 2
1900 8 29 11 32 68 0 139 1917 12 6 20 39 63 0 222 1933 1 4 0 26 6.1 1
1900 9 24 12 32 60 2 140 1918 7 26 5 50 67 0 223 1933 1 7 13 6 68 1
1901 5 14 5 N 60 O 141 1918 9 13 18 8 6.1 0 224 1933 1 8 15 28 63 1
1901 6 15 18 34 70 2 142 1918 12 14 6 33 62 0 225 1933 3 3 2 30 8.1 0
1901 8 9 18 28 72 1 143 1919 5 3 9 52 74 0 226 1933 3 3 2 40 65 2
1901 8 10 3 33 74 0 144 1919 7 22 8 51 6.1 0 227 1933 3 3 3 25 66 2
1901 8 10 5 0 63 2 145 1919 8 4 3 8 67 0 228 1933 3 3 3 48 60 2
1901 8 11 20 31 60 2 146 1919 8 8 1 832 62 0 229 1933 3 3 5 42 68 2
1901 8 29 2 16 63 2 147 1919 9 12 23 54 6.1 2 230 1933 3 3 18 12 65 2
1901 9 30 19 4 62 2 148 1919 10 11 22 17 63 O 231 1933 3 3 18 37 62 2
1902 1 1 0 20 6.1 2 149 1919 12 20 9 28 63 0 232 1933 3 3 18 39 60 2
1902 1 31 10 42 66 1 150 1920 2 8 0 6 67 0 233 1933 3 4 0 2 60 2
1902 5 2 20 3t 70 0 151 1920 9 17 0 8 65 0 234 1933 3 8 10 35 60 2
1902 7 1 17 19 63 2 152 1920 9 21 5 27 6.1 0 235 1933 4 2 7 # 60 2
1902 7 8 23 5 62 2 153 1920 11 9 2 38 63 0 236 1933 4 9 11 46 66 2
1902 8 7 18 22 6.1 2 154 1920 12 3 8 39 60 2 237 1933 4 9 11 57 60 2
1904 12 17 16 2 63 0 156 1920 12 20 5 M1 68 0 238 1933 4 19 11 55 6.1 2
1904 12 24 11 46 60 0 156 1921 1 10 3 56 6.1 0 239 1933 4 23 16 13 63 2
1905 6 27 1 10 62 0 157 1921 3 3 12 2 69 0 240 1933 6 9 3 10 6.1 2
1905 7 7 1 21 78 0 158 1921 8 22 13 5 63 0 241 1933 6 13 6 8 6.1 0
1905 12 26 12 11 60 O 159 1922 1 23 7 5 65 0 242 1933 6 14 5 33 64 0
1906 2 4 15 24 60 2 160 1922 3 17 3 A 62 0 243 1933 6 19 6 37 71 0
1906 4 5 11 50 60 2 161 1922 4 27 18 15 60 2 244 1933 7 10 9 21 63 2
1906 4 9 2 37 6.1 0 162 1922 5 16 5 21 65 0 245 1933 7 21 8 14 62 2
1907 1 5 1 46 63 0 163 1922 6 3 13 56 6.1 2 246 1933 9 21 18 47 6.1 2
1907 4 28 9 57 60 0 164 1922 7 6 5 20 65 0 247 1934 4 7 4 9 63 0
1907 5 28 7 54 63 0 165 1922 12 9 7 33 68 0 248 1934 10 6 5 25 62 0
1907 12 2 22 53 67 0 166 . 1923 5 26 12 12 64 1 249 1935 2 20 5 10 60 O
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Table 1 (continued)

NO YEAR MO DY HR MN MAG C NO YEAR MO DY HR MN MAG C NO YEAR MO DY HR MN MAG C
250 1935 3 31 6 19 64 0 328 1943 3 14 21 4 63 1 406 1960 3 21 2 7 72 0
251 1935 7 19 9 50 69 0 329 1943 4 11 23 46 67 0 407 1960 3 21 9 34 60 2
252 1935 10 13 1 45 69 2 330 1943 4 13 4 43 62 2 408 1960 3 23 9 28 67 2
253 1935 10 13 2 0 65 2 331 1943 4 13 4 50 60 2 409 1960 3 23 10 7 6.1 2
254 1935 10 13 10 &7 64 1 332 1943 6 13 14 11 71 0 410 1960 3 24 7 22 60 2
255 1935 10 18 9 1 74 0 333 1943 6 13 14 58 64 2 411 1960 6 16 0 36 62 1
256 1935 10 18 23 58 65 2 334 1943 6 13 17 36 64 2 412 1960 7 30 2 3 67 O
257 1935 10 19 6 52 63 2 335 1943 6 14 2 39 63 2 413 1960 8 13 16 11 62 0
258 1936 3 2 12 19 68 0 336 1943 6 15 1 22 6.1 2 414 1961 1 16 16 20 68 0
259 1936 3 1 5 36 63 2 337 1943 6 t5 20 10 67 2 415 1961 1 16 20 19 64 2
260 1936 3 1 9 4 6.1 0 338 1944 2 1 14 16 68 0 416 1961 1 16 21 12 65 2
261 1936 6 3 1 15 60 O 339 1944 3 10 15 40 6.1 0 417 1961 1 16 23 3 6.1 2
262 1936 11 3 5 45 75 0 340 1944 6 6 20 48 60 O 418 1961 1 17 0 4 66 2
263 1936 11 14 9 58 60 0 341 1944 10 3 5 29 64 1 419 1961 2 28 13 16 64 O
264 1937 1 7 15 12 66 2 342 1945 2 10 13 &7 71 0 420 1961 3 25 7 57 6.1 0
265 1937 1 20 9 3 60 O 343 1945 2 18 7 35 62 2 421 1962 4 12 9 52 68 0
266 1937 3 22 4 27 6.1 0 344 1945 2 18 19 8 66 2 422 1962 4 26 0 47 64 2
267 1937 7 27 4 56 71 2 345 1945 3 12 6 37 66 O 423 1963 5 8 19 22 6.1 0
268 1937 10 17 13 47 66 0 346 1945 4 10 10 22 64 0 424 1963 8 15 15 11 66 0
269 1937 12 10 22 28 6.1 0 347 1945 6 26 8 40 6.1 0 425 1964 1 10 13 50 6.1 0
270 1938 5 23 16 18 70 O 348 1946 5 10 7 27 6.1 0 426 1964 2 5 20 30 60 O
271 1938 9 22 3 52 65 0 349 1946 7 20 6 16 60 O 427 1964 4 16 10 4 60 O
272 1938 10 12 9 34 69 0 350 1946 8 3 22 6 6.1 0 428 1964 5 3 238 30 62 0
273 1938 10 29 22 8 64 0 351 1946 8 14 18 40 60 O 429 1965 3 17 1 46 64 0
274 1938 11 5 17 43 75 0 352 1947 1 3 12 57 60 O 430 1965 3 29 19 47 64 2
275 1938 11 5 19 50 73 2 353 1947 11 14 19 49 65 0 431 1965 6 13 16 6 60 O
276 1938 11 6 6 22 6.1 2 354 1948 3 15 20 24 60 O 432 1965 9 18 1 21 67 0
277 1938 11 6 17 583 74 2 3556 1948 5 12 9 57 66 0 433 1965 9 23 7 8 62 2
278 1938 11 7 2 19 60 2 356 1948 5 12 10 21 6.1 2 434 1967 1 17 20 59 63 0
279 1938 11 7 6 4 62 2 357 1948 5 14 22 19 62 2 435 1967 11 19 21 6 60 O
280 1938 11 7 6 38 69 2 358 1948 9 23 9 52 60 O 436 1968 5 16 9 48 79 0
281 1938 M1 7 9 48 62 2 359 1948 10 29 5 45 63 0 437 1968 5 16 10 4 62 2
282 1938 11 7 10 38 64 2 360 1949 5 22 6 40 63 O 438 1968 5 16 19 39 75 2
283 1938 11 7 10 45 62 2 361 1951 7 26 18 59 60 O 439 1968 5 17 1 13 6.1 2
284 1938 11 7 10 54 64 2 362 1951 7 29 8 4 6.1 0 440 1968 5 17 8 4 67 2
285 1938 11 7 1127 60 2 363 1951 10 18 17 26 66 0 441 1968 5 23 4 29 63 2
286 1938 11 7 13 15 63 2 364 1952 3 4 10 22 82 0 442 1968 5 24 23 6 62 2
287 1938 11 8 4 33 65 2 365 1952 3 4 10 40 65 2 443 1968 6 12 22 4 72 2
288 1938 11 9 11 22 65 2 366 1952 3 5 4 56 64 2 444 1968 6 13 6 57 6.1 2
289 1938 11 9 18 15 63 2 367 1952 3 5 18 17 60 2 445 1968 6 17 20 52 64 2
290 1938 11 11 7 22 64 2 368 1952 3 10 2 3 68 2 446 1968 6 18 3 57 60 O
291 1938 11 14 7 3 70 2 369 1952 4 28 19 54 62 2 447 1968 6 22 10 12 6.1 2
292 1938 11 14 11 36 60 2 370 1952 5 14 9 36 6.1 2 448 1968 7 5 20 28 64 0
293 1938 11 16 20 8 66 2 371 1952 5 17 18 48 6.1 2 449 1968 7 12 9 4 64 2
294 1938 11 19 14 54 60 2 372 1952 5 20 3 32 65 2 450 1968 9 21 22 6 69 2
295 1938 11 22 10 14 69 2 373 1952 10 27 0 46 6.1 1 451 1968 10 8 5 49 62 2
296 1938 11 22 10 40 6.1 2 374 1952 10 27 0 53 64 1 452 1968 11 11 28 41 60 2
297 1938 11 22 12 24 60 2 375 1962 10 27 3 1 64 1 453 1968 11 14 3 4 60 2
298 1938 11 26 17 20 63 2 376 1952 10 27 4 19 65 0 454 1968 11 25 6 20 60 2
299 1938 11 29 22 39 64 2 377 1952 10 27 12 17 64 2 455 1969 3 17 0 54 6.1 0
300 1938 11 30 11 29 69 2 378 1952 10 28 15 30 63 2 456 1970 5 28 4 5 62 0
301 1938 12 1 0 16 6.1 2 379 1962 11 1 1 37 64 2 457 1970 5 28 7 35 60 2
302 1938 12 3 2 12 65 2 380 1953 1 19 13 57 60 2 458 1970 9 14 18 44 62 0
303 1938 12 7 22 4 64 0 381 1953 2 6 22 13 67 2 459 1970 12 7 5 20 6.1 0
304 1938 12 14 2 26 63 2 382 1953 4 4 14 52 62 0 460 1971 4 5 3 39 60 O
305 1938 12 19 6 45 60 2 383 1953 5 26 10 43 60 2 461 1971 8 2 16 24 70 O
306 1938 12 23 10 51 60 2 384 1953 12 7 28 11 64 O 462 1971 9 15 28 55 63 0
307 1939 1 24 13 1 6.1 2 385 1963 12 22 2 36 6.1 0 463 1971 9 24 10 9 6.1 2
308 1939 2 17 3 51 65 2 386 1954 4 5 8 14 6.1 2 464 1972 3 20 0 57 64 0
309 1939 8 22 9 6 63 2 387 1954 7 18 18 7 64 O 465 1973 9 5 22 3 6.1 0
310 1939 10 11 3 32 70 O 388 1954 9 12 16 43 62 0 466 1973 9 10 3 25 60 2
311 1939 10 11 3 51 64 2 389 1954 11 19 5 44 6.1 0 467 1973 11 19 22 1 64 O
312 1940 2 9 22 53 62 0 390 1955 5 1 18 55 6.1 0 468 1974 1 25 4 12 60 O
313 1940 11 14 19 33 62 0 391 1955 5 6 9 4 60 2 469 1974 3 3 13 50 6.1 0
314 1940 11 20 0 1 66 0 392 1956 2 10 9 2 60 O 470 1974 7 8 14 45 63 0
315 1941 2 9 13 16 6.1 0 393 1956 10 12 21 22 6.1 0 471 1974 10 10 15 48 62 1
316 1941 3 12 23 16 63 0 394 1956 11 21 16 33 62 0 472 1974 10 10 15 56 64 0
317 1941 3 13 6 37 62 2 395 1957 6 12 17 28 6.1 0 473 1974 10 12 15 14 62 2
318 1941 3 14 23 3 62 2 396 1958 2 16 15 4 6.1 0 474 1974 11 16 8 32 6.1 0
319 1941 3 19 11 45 63 2 397 1958 4 8 3 5 67 O 475 1975 5 4 18 31 60 O
320 1941 5 9 18 32 6.1 0 398 1958 4 8 3 30 62 2 476 1975 10 30 10 41 60 O
321 1941 5 9 18 38 60 2 399 1958 4 8 3 38 62 2 477 1976 11 8 17 19 62 0
322 1941 11 26 0 20 63 0 400 1958 4 1 9 58 63 2 478 1978 2 20 13 36 67 0
323 1942 2 21 16 7 65 0 401 1958 9 3 17 10 60 O 479 1978 4 7 8 29 6.1 0
324 1942 9 9 1 7 63 1 402 1959 1 22 14 10 68 O 480 1978 6 12 17 14 74 0
325 1942 9 21 14 583 62 0 403 1959 1 24 14 8 62 2 481 1978 6 14 20 34 63 2
326 1942 11 16 2 12 65 0 404 1959 10 26 16 35 68 0 482 1979 2 20 15 32 65 0
327 1943 3 14 20 59 6.1 1 405 1960 2 5 1 50 6.1 0 483 1980 1 13 0 57 6.1 0

NOTE: NO, YEAR, MO, DY, HR, MN, and MAG, indicate earthquake number, year, month, day, hour, minute, and magnitude, respectively. In the column C, 0, 1, and 2 represent main shock,
foreshock, and aftershock, respectively.



-
o

- 400

- 300

- 200

[~ 1oo

CUMULATIVE SQURE-ROOT OF ENERGY (x10%erg!/?)
NUMBER OF SHOCKS

28000
TIME(DAYS)

! U B "ll .Illhg Hul i i

Figure 2. Cumulative Number of Shocks (lower solid line), Cumulative
Square Root of the Released Energy (upper solid line), and Plot of the
Magnitudes Versus the Occurrence Times of Shocks.

0 15000 30000

the parameter vectors # and  have no common compo-
nents. Then maximization of the full likelihood is reduced
to the maximization of each component. Although I will
have to examine the first part of (22) afterwards in Section
4 to argue for the utility of seismic quiescence, here I am
interested in the second part (the so-called conditional
likelihood), the logarithm of which is written as

log L(6) = }leog At 0) — jT At 0) di, (23)

where A(t; 6) is the parameterized conditional intensity
rate discussed in the previous section and {¢;} is the set of
occurrence times of earthquakes in an observed time in-
terval [0, T]. Note here that the magnitude data {m;} of
the shocks are also included in the function A(¢; ), as in
(17) and (21). We can expect the conditional likelihood
to enjoy the standard large-sample theory under some
regularity conditions such as stationarity and ergodicity of
the joint series {(;, m;)}.

The maximum of the log-likelihood and the estimates
of the parameters in (23) can be obtained numerically by
a standard nonlinear optimization technique such as that
in Fletcher and Powell (1963). It is then possible to judge
which of the models described in the preceding section
provides the best fit to the earthquake process data. For
this purpose, the Akaike information criterion (AIC)
(Akaike 1974) is used as a measure for selecting the best
among competing models for a fixed data set. This is de-
fined by AIC = (—2)max(log-likelihood) + 2 (number
of used parameters). The model with the smaller AIC
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Figure 3. Density Distribution (x) and Cumulative Distribution (o) of
Magnitudes for the Data Set.

shows the better fit to the data. It is sometimes useful to
note that the log-likelihood ratio statistic takes the form

(—=2)log(Lo/L,) = AIC(H,) — AIC(H,) + 2k, (24)
where k denotes the difference between the numbers of
parameters in Hy, and H;. When the model H,; contains
the model H, as a restricted case, then under the null
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Figure 4. Empirical Log-Survivor Function of the Intervals Between
Successive Earthquakes.
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Figure 5. Estimated Variance—Time Curve (+ + +). The solid line is a theoretical one for the stationary Poisson case, and the dotted lines
correspond to the 95.5% and 99.7% error bounds for individual estimates under the stationary Poisson process.

hypothesis H,, the statistic (—2)log(L,/L,) is expected
to have a chi-squared distribution with £ df. The compar-
ison of the minimum AIC procedure with the conventional
likelihood ratio test is discussed in Akaike (1977, 1983).
It is emphasized that we can further extend the comparison
among nonnested models by using AIC, which was orig-
inally derived for such a purpose.

Table 2 gives the maximum log-likelihoods and AIC

values for the models considered. For the models where
(15) is used, I considered values of x up to 16, but here
are listed only the results for x = 1 and for the order &
with minimum AIC value. Table 2 clearly shows the fol-
lowing: (a) the effect of magnitude on cluster size is sig-
nificant, (b) for g(¢), the modified Omori function (14) is
significantly better than the Laguerre-type polynomials
(15), and (c) the epidemic-type models (17) are signifi-

Table 2. Comparison of Models Fitted to the Data in Table 1

Response function (15), including (13)

Response function (11)

Magnitude effect § = 0

Magnitude effect § > 0

Magnitude effect § = 0 Magnitude effect § > 0

Model k=1 1=k=16" k=1 1=k=16" p = 1.0* p # 1.0* p = 1.0* p # 1.0*
Trigger models
Optimum orders — x=9 — x=7 — — — —
—log L(6) 2,404.2 2,275.4 2,308.6 2,271.0 2,348.5 2,347.3 2,251.3 2,249.4
Number of parameters 3 11 4 10 3 4 4 5
AIC 4,814.4 4,572.8 4,625.3 4,562.0 4,703.0 4,702.6 4,510.5 4,508.8
Epidemic-type models

Optimum orders — x =11 — x =11 —_ — — —
—log L(A) 2,288.4 2,236.1 2,248.0 2,205.1 2,226.4 2,226.4 2,185.2 2,185.0
Number of parameters 3 13 4 14 3 4 4 5
AIC 4,582.8 4,498.3 4,504.0 4,438.2 4,458.8 4,460.7 4,378.4 4,380.0

* Restrictions
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cantly better than the restricted trigger models (21). Es-
pecially, the model (17) with (14) is significantly better
than any of the other models. Estimates of the parameters

NUMBER OF EVENTS PER DAY

NUMBER OF EVENTS PER DAY
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Figure 6. Histogram for Estimating m(s), the Intensity Rate Under the Palm Probability. The dotted lines indicate 95.5% and 99.7% error
bounds for individual estimates assuming the stationary Poisson process.
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Figure 7. Plot of | m(s) — 4, | Versus s on a Log-Log Scale.

of the best model are listed in Table 3; here the reference
magnitude was taken to be M, = 6.0. The plot of the
estimated conditional intensity rate is shown in Figure 8.

3.3 Residual Analysis of Point Process Data

AIC is useful for the comparison of competing models.
Having obtained the best model among those considered,
however, there remains the possibility of the existence of
a still better model. So, we usually check whether the
major features of the given data can be reproduced by the
estimated models [see Ogata (1981) for efficient and sys-
tematic simulation of point processes using the conditional
intensity function]. If any one of the important features is
not reproduced, we must consider further models whose
AIC values can be compared with those of the previous
best model. Thus it may be useful to develop graphical
techniques for amplifying the features of the data that
deviate from the model, if any.

Suppose that the point process data {;} are generated

Table 3. Estimated Parameters of the Best Model (M, = 6.0)

U K c p B

.00536 .017284 .01959 1.0 1.61385
(shocks/day) (shocks/day) (days)
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Figure 8. Estimated Conditional Intensity Rate of (17) With Parameter Values in Table 3. The rate is plotted in the logarithmic scale. The arrows
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by the conditional intensity A(f). Consider the integral of
the conditional intensity

A(F) = L Q) dt,

which is a monotonically increasing function because A(f)
is nonnegative. If we consider the random time change 7
= A(¢) from ¢ to 7, then {t;} is transformed one-to-one
into {z;}. It is well known that {z;} has the distribution of
a stationary Poisson process of intensity 1 (see, e.g., Pap-

(25)
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Figure 9. Cumulative Numbers of the Residual Process and Mag-
nitudes Versus the Transformed Time t,. The dotted lines indicate the
average and two-sided 95% and 99% error bounds of the Kolmogorov—
Smirnov statistic.

angelou 1972). Therefore, if the estimated conditional in-
tensity A(¢; 0) is a good approximation to the true A(f),
then the transformed data {z;} are expected to behave like
a stationary Poisson process. In other words, a deviation
from a property of {z;} from that expected of a stationary
Poisson process implies the existence of a corresponding
feature of the data {t;} that is not captured by the model
A(t; 6). The intensity A(t; §) represents a model for pre-
diction, whereas the transformed data {r;} may be re-
garded as “noise,” or “residuals” in a wide sense, of the
point process data {t;}. This sequence {z;} will be called
the residual process and is a further example of generalized
residuals similar to those discussed in Cox and Snell
(1968).
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suming the uniform distribution.
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Any conventional graphic tests for complete random-
ness can be useful for residual analysis. Figure 9 shows
the plot of the cumulative number of points {z;} versus
transformed time v = A(¢). The dotted lines display the
two-sided 95% and 99% error bounds of the Kolmogorov—
Smirnov statistics, assuming the uniform empirical distri-
bution. Ogata and Shimazaki (1984) applied this sort of
residual analysis of trend to an aftershock sequence to
reveal the time at which the background seismicity sur-
passes the aftershock activity. Another possible test was
described by Berman (1983), who discussed the residual
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Figure 12. Empirical Log-Survivor Function of the Intervals Y, of the
Residual Process. The real lines indicate the percentiles that corre-
spond to one-, two-, and three-fold standard errors of the normal dis-
tribution.

analysis of the transformed interarrival times properties;

that is to say, he considered whether

Y =1 — w1 = Alte) — At-v),
k=1,...,N, (26)

are iid exponential random variables with unit mean, and
hence whether the statistics Uy = 1 — exp(—Y,) are iid
uniform random variables on [0, 1). The empirical distri-
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Figure 13. (a) Estimated Variance—Time Curve for the Residual Process. The solid line is the theoretically expected variance~time curve for
the stationary Poisson process. The dotted lines indicate for individual estimates 95.5% and 99.7% error bounds for individual estimates.
(b) Estimated variance—time curve for the residual process after removing the Shioya-Oki swarms in 1938.
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bution of U, for our data set is plotted in Figure 10 with
the same error bounds as in Figure 9. Berman also sug-
gested a plot to test for independence of the intervals.
Assuming that any serial correlation present is likely to
show up in neighboring intervals, he plotted U, against
Uy +1- The plot for our data set is given in Figure 11. The
plots for {z,} corresponding to Figures 4, 5, and 6 are given
in Figures 12, 13a, and 14, respectively. Here the lines for
two-sided error bounds for individual estimates corre-
spond to 99.7%, 95.5%, and 68.3% (only for Fig. 12).
The variance—time curve V(7) in Figure 13a still indicates
some clustering features, despite the fact that Figures 9-
12 and 14 seem to support the hypothesis that the noise
process {7;} is a stationary Poisson process.

Thus 1 suspect that there may be some local unusual
characteristics in {7;} invalidating the stationary Poisson
assumption. To find such features, consider the number
of points AN = N(t — h, 7) in the interval (z — A, 7).
If the residual process {z;} is stationary Poisson, then AN
= N(t — h, 7) is a Poisson random variable with mean
h for each t. Here, if we use the transformation suggested
in Shimizu and Yuasa (1984),

é = é(AN’ h)
_ 33AN + 29 — h — (32AN + 31)[h/(AN + 1)]"
B 9(AN + 1)z ’
(27)

i

Al W
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then ¢ is well approximated by a normal random variable
with mean 0 and variance 1. This transformation was ob-
tained by an idea similar to the derivation of the well-
known Wilson-Hilferty transform.

Setting # = 8, for example, the time series of ¢ as a
function of 7 is plotted in Figure 15(3a). It behaves like a
Gaussian process, except for the part of the trajectory
around 1938. This is a stretch of outliers associated with
a swarm of large earthquakes, including magnitudes 7.4
(May 23), 7.7 (Nov. 5), 7.8 (Nov. 5), 7.7 (Nov. 6), and
7.1 (Nov. 6) at Shioya-Oki (Off Fukushima Prefecture) in
the southern part of the region shown in Figure 1. After
finding these outliers, I learned that Abe (1977) had al-
ready reported and described the unusual features of these
shocks in detail. That is to say, it is very rare that a swarm
includes a series of shocks with such large magnitudes or
such a large energy release. In addition, he pointed out
the fact that there had been no such major earthquake in
the focal region for at least 800 years, whereas the fre-
quency of large earthquakes, M = 7.5, in other parts of
the Off Tohoku area was about one per 100 years. Finally,
I considered another variance—time curve V(7) in Figure
13b, obtained by removing the swarm from the residuals
{z:}: the corresponding numbers i of the removed data are
shown from 274 through 302 in Table 1. This variance—
time curve suggests that the remaining part of the residuals
satisfies the hypothesis of stationary Poisson process.
Therefore, I conclude that the seismic activity (in the sense
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Figure 15. (1) The magnitudes versus occurrence times of the residual process. (2) The transformed times of January 1 of every year from
1885 to 1980. (3a) Time series of the number of points AN, in the interval (z-h, t) of the residual process. Putting h = 8, AN, is transformed into
&, by the relation (27). The dotted lines are one-, two-, and three-fold standard errors of the approximated normal distribution. The sideways
histograms indicate the total lengths of the time span of © with the same values of AN.,, and the broken line corresponds to the theoretical
distribution (approximate normal) assuming that the residual process is the stationary Poisson process. (3b) Time series of £ for h = 5.

of frequency of shocks) of the remaining part seems to be
well described by the selected model, with estimated pa-
rameters as given in Table 3.

4. SEISMIC QUIESCENCE

In contrast to the assertion of Lomnitz and Nava (1983)
that seismic quiescence is merely a consequence of the
decaying activity of aftershocks, there are some reports
discussing the presence of quiescence with quantitative
observation of earthquake frequencies. Okada (1978)
found some seismicity lowering prior to major earth-
quakes; that is, the cumulative curve of felt earthquake
frequency per month seems to bend lower than the fre-
quency predicted by the combination of the constant rate
background seismicity and the series of aftershock-type
activity. I am interested here in solving the point at issue

by using residual analysis. First of all, from Figure 12 we
cannot find a statistically exceptionally long interval Y; =
7; — 7;-1 under the assumption of a stationary Poisson
process with intensity rate 1. In addition, we cannot find
significant lowering of the number AN = N(z — 8, 7) in
Figure 15(3a); there are five times when the trajectory of
¢ = (AN, 8) defined in (27) crosses the second-lowest
error bound (i.e., ¢ = —2) from above, but this does not
seem unusual for the stationary Poisson process with sam-
ple size 483. Do these observations support the afore-
mentioned assertion of Lomnitz and Nava (1983)?

If we look at Figure 15(3a) in comparison with the plot
of the transformed data {(z;, M,)} we can see that the five
large shocks with M = 7.4 (i.e., 7.7, 7.8, 8.2, 7.9, and
7.4) took place within a year after £, had crossed the level
¢ = —2 from below. It seems unlikely that such coinci-
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dence is wholly due to the choice of # and £. For example,
a similar plot was made for £ = 5 in Figure 15(3b), where
we see that the three large shocks with M = 7.7 (i.e., 7.7,
7.8, and 8.2) occurred within a year after £, had crossed
the level £ = —2 from below and that five shocks with M
= 7.4 (the same as before) occurred within a year after
the level crossing of £ = — 1.5, which took place 11 times.
Are these combinatorial realizations rare phenomena or
not? This relates to the question of usefulness of seismic
quiescence for predicting the major earthquakes. I ten-
tatively define the quiescence as the time span of 7 or ¢
when the trajectory of £, is lower than a certain level, such
as —2.0 or —1.5, like the above.

Before assessing the probability of the aforementioned
events, we have to make assumptions about the stochastic
law governing the magnitudes of shocks. From Figure 3
we may assume that the marginal distribution of magni-
tudes throughout the 98 years in the area is negative ex-
ponential. But what should we assume about the joint
distribution of magnitudes and occurrence times? Recall
here the independence assumptions used to obtain the full
likelihood in (22). As mentioned, in studying aftershock
sequences, Lomnitz (1966) put forward a hypothesis of
“magnitude stability,” that is to say, stationarity of the
magnitudes and their independence from the occurrence
times; it was shown in his paper that the local averages of
aftershock magnitudes fluctuated slightly about a mean
value. This hypothesis was implicitly supported by Utsu
(1962) in his detailed trend analysis of three Alaskan af-
tershock sequences.

Now can this hypothesis extend to the general sequences
of the mixture of main shock and aftershocks in Figure 2?
This question relates to the explanation of so-called Béth’s
law. Bath’s law claims the different mean magnitudes be-
tween the group of main shocks and group of aftershocks,
and Lomnitz and Nava (1983) interpreted this by the dif-
ferent b-values [see Eq. (3)] between the two groups. On
the other hand, Vere-Jones (1966, 1975) carefully checked
such differences using Utsu’s table (Utsu 1961) and con-
cluded that Bath’s law can be adequately explained by the
simple assumption that the magnitudes in an earthquake
sequence form a random sample independently selected
from a distribution having the exponential form. In ad-
dition, the experiment by Utsu (1971, pp. 425-426) sug-
gests that the Gutenberg—Richter law of magnitude fre-
quency with the same b-value throughout the whole seismic
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sequence can imply significantly different b-values be-
tween the group of main shocks and the group of after-
shocks.

It was concluded in Section 3 that the residual time
process is a stationary Poisson process. Now a joint model
for both magnitude and time will be discussed. This dis-
cussion is based on the assumption that one b-value applies
to the full shock sequence. If we assume that independence
of the magnitudes M; from the past occurrence times of
shocks and their magnitudes, {(#;, M;); t; < t;} as well as
stationarity, then the residual process {(z;, M)} is ap-
proximately a stationary compound Poisson process. Thus
we can now assess the probability of the realized combi-
nation of the seismic quiescences and the succeeding oc-
currence of a major earthquake within a year. Since the
number of shocks with M = 7.7 is six in 96 years, 6/96
(per year) may be given for the rate of such shocks. Sim-
ilarly, 19/96 and 47/96 per year are the rates of shocks
with M = 7.4 and M = 7.0, respectively. I observed the
numbers of the previously defined quiescences in Figure
15 and also counted the major shocks of the specified
magnitudes that occurred within a year after the end of
the quiescences. Using all of these observations the prob-
abilities of the realized combinations were assessed. These
are listed in the row for (i) of Table 4. It is seen that all
of the assessed probabilities are very small.

On the other hand, I generated the five sequences (ii)-
(vi) of the point process [see Fig. 16 and Ogata (1981) for
the simulation method], using the estimated model (15)
with the same magnitudes as the original data given in
chronological order, and then calculated the probabilities
of the realizations of the same combinations as before for
each realized residual process. Rows (ii)—(vi) of Table 4
show the observed combinations and the assessments of
their probabilities, which exhibit the ordinary probabilities
as expected. The implication of the observed small prob-
ability events is that the magnitude distribution is depen-
dent on the past occurrence times of shocks. In other words,
seismic quiescence as defined previously can provide use-
ful information for predicting a major earthquake.

Finally, the stability of the residual process was ex-
amined from the predictive viewpoint. The data were di-
vided into two parts, and the earlier part (1885-1949) was
used to fit the selected model. Estimated values of param-
eters, for comparison with Table 3, were u = .00662, K
= .01769, ¢ = .01928, p = 1.0, and § = 1.51912 with the

Table 4. Probability Assessments of Realized Combinations

M=77 (&< -2), M=74 (< -1.5),
S:F S:F

Case M=74(&<-2),
outcome S:F
These data (i) 5:0 (.00030)
Simulated (i) 0:2 (.64)
Simulated (i) 2:2 (.18)
Simulated (iv) 0:3 (.52)
Simulated (v) 2:3 (.26)
Simulated (vi) 1:6 (.79)

3:0 (.00024) 5:6 (.0060)
— 2:8 (.34)

0:1 (.94) 4:13 (.25)
— 3:11 (.31)

1:4 (.28) 3:13 (.42)
0:2 (.88) 1:16 (.87)

NOTE: S indicates the number of cases in which major earthquakes with magnitudes of the given inequalities took place within a year
after the end of the defined quiescences in the text. F indicates the number of cases in which the major shock did not take place. The
assessed probabilities for the outcomes (S:F) are shown in parentheses.
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Figure 16. The Magnitudes Versus Occurrence Times Plot. (i) Real data; (ii)—(vi) simulated data. The order of the magnitudes are the same

throughout (i)—(vi).

reference magnitude M, = 6.0. Then Figure 17, corre-
sponding to Figure 15(3a), is obtained for 1885-1980, in
which similar features are seen. In 1951, especially, re-
markable quiescence is observed before the large shock
(M8.2) in 1952. In the period 1950-1980 there are four
cases in which ¢ = £(AN, 8) crosses the level ¢ = —2
from below, within one year after which three large shocks
with M > 7.4 occurred.

5. CONCLUSION AND SOME REMARKS

We have seen that the epidemic-type model that in-
cludes the effect of magnitude gave a better fit to the data
than any of the restricted trigger models. This model is
defined in terms of the conditional intensity rate, or
seismic risk function of time, based on the following simple
assumptions: (a) The background seismic activity is gen-
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Figure 17. (1) Magnitudes Versus Occurrence Times of the Residual Process Obtained by the Selected Model for the First Part of the Data
(1885-1949). The vertical dotted line shows the end of 1949. (2) and (3) are similar to (2) and (3a) in Figure 15 but are extrapolated for the last

part (1950—1980).

erated by a stationary Poisson process with a constant
hazard rate. (b) Each shock has a risk of stimulating af-
tershocks proportional to e, where M is the magnitude
of the shock. (c) The hazard rate of aftershocks decreases
with time according to the modified Omori law, K/(¢ +
c)P.

A new method of residual analysis for a modeled point
process was developed This is based on the change of
time scale (25) using the estimated conditional intensity
(seismic risk function of time). I investigated whether the
transformed time-scale version of the data is distributed
as a compound Poisson process. The residual analysis for
seismicity in the Off Tohoku area indicated that the Pois-
son model in the changed time scale seems to be accept-
able, except during a time period with untypical charac-
teristics. The magnitude distribution, however, is not
independent of the history of occurrences, especially just
after seismic quiescences. In other words, seismic quies-
cence can be useful for predicting a coming major earth-
quake.

There were two major earthquakes of the M8 class, that
is, Off Sanriku 1896 (M8.5) and 1933 (M8.1), prior to

which I did not find quiescence in Figure 15. Both of these
earthquakes have unusual characteristics compared with
the other major shocks. The 1896 earthquake was a
“tsunami earthquake” (Kanamori 1972), which is char-
acterized by an unusually large amount of low-frequency
waves. Because of this, the estimated instrumental mag-
nitude is only 6.8 (Utsu 1979), although Abe (1979) gave
a magnitude 8.6 estimated from the size of the tsunami.
The 1933 Sanriku (M8.1) earthquake has been character-
ized as having the “normal-fault” type of mechanism; that
is to say, it was probably caused by gravitational pull ex-
erted by the sinking lithosphere (Kanamori 1971), whereas
most of the other major shocks in the east off the Tohoku
area are caused by compressive forces. Excepting these,
we are left with the striking conclusion that the mechanism
underlying very large shocks can affect beforehand the
seismicity of a broad area.

I also made a plot of &, similar to that in Figure 15 for
only the main shocks identified by Utsu (see the data in
Table 1). If we assume the stationary Poisson model for
these shocks in the original time scale, we obtain results
similar to those of the previous section. It is generally a
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very hard task, however, to carry out such identification
objectively by using the available earthquake catalog (see
the last two paragraphs in Sec. 2.1).

Finally, many seismologists believe that there is a spatial
feature of the earthquake process, known as the seismic
gap, which is related to the seismic quiescence. This fea-
ture, if identified early, could be used not only for the
prediction of the location of a large shock in space, but in
magnitude as well as in time: A large gap can be expected
to be associated with a strong earthquake (see, e.g.,
Ohtake, Matumoto, and Latham 1977). In the present
data set, I have so far not succeeded in identifying seismic
gaps. This might be due to the relatively small number of
shocks compared with the size of the area. Even if we have
a more extensive data set, I believe that such identification
would be difficult without suitable modeling of the space—
time properties. For example, Motoya (1984) investigated
the seismic activity of the whole Hokkaido area and its
vicinity, using the catalog of micro-earthquakes (1977-
1984) compiled by Hokkaido University. He divided the
area into 42 regions and constructed a monthly time series
of the percentage of the numbers of regions whose micro-
earthquake activity was lower that month than their his-
torical rates. In spite of his success in finding four clear
quiescences in the time series just before large shocks, he
could not identify the seismic gaps. The Hokkaido area is
very active seismically, so the data set is complex. In ad-
dition, Motoya’s methods are less sophisticated than mine.
Using data for all of Japan and analyzing aftershocks in-
stead of main shocks with the techniques of this article,
Matsu’ura (1986) recently found 18 quiescences in 11 af-
tershock sequences before unusually large aftershocks not
smaller by more than 1.2 units of magnitude than the main
shock. Some space-time plots of hypocenters in her paper
show that the recovered activity after the quiescence tends
to cluster near the hypocenter of the forthcoming large
aftershock. Of course, determining the seismic gap for a
large aftershock is easier than for a main shock, because
knowledge of the hypocenter of the main shock identifies
the general area in which large aftershock might occur. In
addition, we may need some additional prior information,
such as stress release or accumulation in each focal region,
to identify the gaps for the main shocks over a wide area.

Another task for the future is the modeling of the mutual
relationship between the occurrence times of the earth-
quake series and the corresponding magnitudes. It was
indicated that the full likelihood for the relation is not as
written in (22). The proper model involves a kind of feed-
back system that is not easily modeled.

Some Fortran programs for the analysis of point pro-
cesses, including graphical residual analysis, are available
in the program package TIMSAC-84 (Akaike et al. 1984,
part 2). The other programs used in this article are now
being prepared for publication by Ogata and Katsura.

[Received November 1985. Revised May 1987.]
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