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Abstract
The drift rate of relative gravimeters differs from time to time and frommeter to meter. Furthermore, it is inefficient to estimate
the drift rate by returning them frequently to the base station or stations with known gravity values during gravity survey
campaigns for a large region. Unlike the conventional gravity adjustment procedure, which employs a linear drift model, we
assumed that the variation of drift rate is a smooth function of lapsed time. Using this assumption, we proposed a new gravity
data adjustment method by means of objective Bayesian statistical inference. Some hyper-parameters were used as trade-offs
to balance the fitted residuals of gravity differences between station pairs and the smoothness of the temporal variation of the
drift rate. We employed Akaike’s Bayesian information criterion (ABIC) to estimate these hyper-parameters. A comparison
between results from applying the classical and the Bayesian adjustment methods to some simulated datasets showed that the
new method is more robust and adaptive for solving problems caused by irregular nonlinear meter drift. The new adjustment
method is capable of determining the time-varying drift rate function of any specific gravimeter and optimizing the weight
constraints for every gravimeter used in a gravity survey. We also carried out an error analysis for the inverted gravity value
at each station based on the marginal distribution. Finally, we used this approach to process actual gravity survey campaign
data from an observation network in North China.

Keywords Adjustment of gravity data · Objective Bayesian model · Akaike’s Bayesian information criterion · Gravity
variation · Gravity survey campaign · Relative gravity instrument drift

1 Introduction

Gravity survey campaign data generally refer to the gravity
observed repeatedly at fixed stations with the same routes
and similar time schedules. For each campaign, the less time
needed to finish the entire loop of stations, the more accept-
able the observation results are. During the campaign, it is
assumed that the gravity does not change at the same location.
A continental-scale gravity network has been established
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on the Chinese mainland. Gravity survey campaigns using
this network require many observational teams working
together in the scheduled period. The regional gravity vari-
ations detected by this terrestrial gravity network have been
successfully used to study geoscience problems, including
groundwater change (Kennedy et al. 2014), surface vertical
deformation (Ballu et al. 2003), tectonic events (Lambert
et al. 2006; Van Camp et al. 2016), and earthquakes (Chen
et al. 1979, 2016; Kuo et al. 1993, 1999; Zhu et al. 2010).

In a time-lapse terrestrial gravity survey, the whole net-
work is traveled with a fixed time interval (1/2 or 1 year) to
measure gravity variation, which is at a scale of a few tens
of microgals, at each station during the period between these
two observations. The distance between two adjacent gravity
stations is about several tens of kilometers, and road vehicles
are used to travel between stations. The time interval between
gravity measurements at two adjacent stations is about few
hours. Realistically, only about ten measurements can be
taken per day. For improving survey productivity, portable
relative gravimeters are widely used.
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Since their invention in the early 1960s, relative gravime-
ters have come to be used in terrestrial gravity surveys all over
the world. These gravimeters mainly employ zero-length
springs as the core gravitational sensor. Because the drift of
the zero-length spring is typically low and can be predicted
with a linear fitting in a short time period, the observations
by the high-precision microgravity meters are processed by
the technique of gravity network adjustment (Crossley et al.
2013). Currently, the absolute gravimeters (FG-5 and A10
made by Micro-G, Inc.) are the best alternative approach for
the terrestrial gravity measurement. However, they are still
much more expensive and more time-consuming to use in
the field compared with relative gravimeters, although their
accuracy is much higher. In contrast, relative gravimeters,
which are equipped with spring sensors, are economical and
portable, and theydonot have specific environmental require-
ments. These reasons make them still irreplaceable for the
foreseeable future.

Drift is one of the inherent features of all kinds of relative
gravimeters. It is the phenomenon that the gravity measure-
ment varies with the passage of time. The drift rate should
be frequently estimated by repeating measurements at the
base station or stations with known precise gravity values
throughout the entire survey period. The estimation error of
instrument drift rate will significantly affect the accuracy of
network adjustment. In general, the gravity survey campaign
refers to sets of in situ gravity measurements at a stable sta-
tion at fixed time intervals year after year. The campaign
time of a gravity survey often spans weeks or months. The
drift rate cannot be modeled with a simple linear function
if the campaign time is more than 24 h. The repeatability
of±0.005 mGal is often requested for the high-precision
microgravity and time-lapse gravity research. But a regional
survey may only require a repeatability of±0.050 mGal.
Since many factors can affect the drift rate of the gravimeter,
such as the spring age, temperature inside the instrument,
and transportation, using repeated observations is a practical
approach for estimating the drift rate. However, the need to
frequently return to the base station obviously reduces the
efficiency of the survey. Moreover, loop errors at the base
station, tares, offset, and outliers are also potential causes of
errors in gravity data.

All relative gravimeters that use spring sensors, includ-
ing Scintrex CG5/6, Locaost-Romberg model D/G, and ZLS
Burris, have a complicated drift feature, especially for non-
linear long-term drift. Besides adding more absolute gravity
observations and increasing the number of loops in the sur-
vey network, which are time-consuming and expensive, an
economical and efficient way to obtainmore accurate estima-
tion of gravity is improving the network adjustmentmethods.
Currently, most of gravity network adjustment methods can-
not provide the adaptive drift rate inversion and the weight
on strict optimization for multiple gravimeters. It is one of

the key limitations on the improvement of gravity estimation
accuracy.

Gravity survey campaigns have been carried out many
years on the Chinese mainland. To accomplish a continental-
scale terrestrial gravity survey, thousands of stations need
to be observed every year by means of tens of relative
gravimeters. The key aim of gravity surveys is to acquire
high-accuracy gravity changes with a magnitude of tens of
microgals. The network adjustment is essential and neces-
sary for processing the relative gravity survey data, which
calculates least-squares solutions (optimal estimates of grav-
ity values) from the redundant observations based on the
assumptions of linear drift. Some improvements of the clas-
sical adjustmentmethod have been proposed for some partic-
ular applications (Hwang et al. 2002; Kennedy et al. 2016).
However, how to fit nonlinear drift and balance the accuracy
and productivity of gravity surveys is rarely discussed.

In this paper, we proposed a new approach for adjusting
gravity survey data using objective Bayesian analysis and
minimizing Akaike’s Bayesian information criterion (ABIC)
(Sakamoto et al. 1988; Malinverno 2000; Mitsuhata 2004).
The origin of the ABICwas in weather data analysis (Akaike
1977, 1980), and it has been widely used for the problems
of estimating parameters of seismicity models (Ogata et al.
1993), 3D tomography (Inoue et al. 1990), and geodetic data
inversion (Fukahata et al. 2004, 2008; Murata 1993; Nawa
et al. 1997). For example, the BAYTAP-G is one represen-
tative example of the application of ABIC to analyzing the
earth tide in a continuous relative gravity data at a fixed sta-
tion (Tamura et al. 1991).

In this study, we rewrote the network adjustment equa-
tions by introducing new trade-off parameters that balance
the residual of gravity survey campaign data and the drift
rate of the relative gravimeter. This new method was tested
with some synthetic datasets that were prepared with dif-
ferent drift models based on an actual gravity observation
network. A comprehensive analysis of the fitting residuals
and the accuracy of adjustment was carried out. The grav-
ity survey route and time schedule at each station all came
from actual gravity field work.We also performed a sensitive
analysis for the uncertainty parameters of earth tide factor
(TF) and atmospheric admittance (AA). At last, we evalu-
ated this method by applying it to two observation datasets
and compared the adjustment results to the absolute gravity
observation.

2 Observations from the gravity survey
campaigns and nonlinear drift of relative
gravimeters

The accuracy of gravity variation data is a primary demand
for many potential studies. It depends to a great degree on
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the gravity data processing method. In practice, the variation
of the drift rate of relative gravimeters has been regarded as
the primary error source.

Generally, to reduce the effects of drift rate variation and
offsets, the relative gravity difference (GD) between adjacent
station pairs is used instead of the actual gravity measure-
ments obtained at each station as the input information for
the adjustment. Another advantage of using GD is that, for
station pairs with a relatively short elapsed time between
observations, common-mode signals can be removed auto-
matically (Kennedy et al. 2016).

2.1 Observation data

For ground-based relative gravity measurement, the obser-
vation equation can be written as (Torge 2001):

xe(k) − xs(k) + v × �tk + εk � yk, (1)

where yk is the k-th observed value of GD; s(k) and e(k) are
the starting and ending station numbers corresponding to the
k th observed GD, respectively; xs(k) and xe(k) represent the
true gravity values at the s(k)-th and e(k)-th stations, respec-
tively; v is the meter drift rate; �tk is the travel time for
observing yk between the s(k)-th and e(k)-th stations; and
εk is the observation error for yk . In Eq. (1), the unknown
gravity values, xi , i � 1, 2, . . . , N , and v need to be esti-
mated. Technically, if we have more than two observations
at the same segment between two stations, say, i and j
(i.e., unordered pair {i, j} appears in all the unordered pairs
{s(k), e(k)}, k � 1, 2, . . . , K , twice or more), the unknown
values of �xi j � x j − xi and v can be estimated. In gen-
eral, the least-squares network adjustment method is used to
process these redundant relative gravity measurements.

2.2 Drift

Even thoughdifferent relative gravimeters have different drift
features, the cumulative drift of a relative gravimeter in time,
or in other words, the measured gravity change at the same
location due to drift, can still be approximated by a polyno-
mial of degree a

D(t) ≈
a∑

p�1

vp(t − t0)
p, (2)

where vp is the drift rate at the p-th order and t0 is the travel
start time. When a � 1, Eq. (2) is a linear drift model. The
adopted value of a depends on the gravimeter characteristics,
but it rarely exceeds 2. Also, if the estimate of the drift rate
has someminor error, an error in the measured gravity values
is introduced by

εd ≈ (v̄ − vt ) × �t, (3)

where v̄ is the estimated drift rate and vt is the true
value of the drift rate during the travel time �t. Therefore,
shortening travel time benefits the adjustment. By experi-
ence, the drift rate of all spring-type relative gravimeters
has a low-frequency temporal variation distinct from the
stochastic noise. Also, the drift features of most commercial
ground-based relative gravimeters, including Scintrex CG5,
Lacoste-Romberg model G, and ZLS Burris, may potentially
change with the age of the instrument (Crossley et al. 2013).

Figure 1 shows the time-series data recorded by a CG5
gravimeter (No. 1098) at an observation basement in Bei-
jing. These data are continuously recorded in the basement
with good observation conditions at a sampling rate of once
per minute. The effect of the earth tide has been eliminated
theoretically. The common drift rate of a gravimeter is about
1.43 mGal/day. If a linear drift model is fit to the temporal
variation of the drift in these 25 h, the residuals of the gravity
signals after eliminating the linear drift are about±10 µGal
(Fig. 1a).Nonlinear gravity variation remains in the residuals,
indicating that the drift rate varies with time. The magnified
plot (inset) shows the stochastic noise signals over a stable
time interval, which have small variations over a range of
about 5 µGal. Besides the instrument itself, the noise level
also depends on the environmental interference and site con-
ditions. However, the long-term drift of a gravimeter is more
complicated.

Figure 1b shows a continuous record of gravity reductions
over 55 days by the same CG5 gravimeters, from which we
can see the high-ordered drift. If a second-order drift model
is employed to fit these 55 days of time-series data, the
gravity residual is about±150µGal and significantly related
to the temporal variance of the meter drift rate. Moreover, if
a segmental linearization is applied to fit the gravity records
for each day, the residual gravity variation decreases to
about±10 µGal with a few outliers, as shown Fig. 1c. The
residual this time basically contains the internal noise of the
instrument with obviously random characteristics. However,
the range of estimated drift rate increased to 0.3 mGal/day.
In this case, we can see that the gravimeter’s long-term and
short-term drift rates obviously differ from the observation
noise.

Instrumental drift can be influenced by many factors.
Apparently, the drift can be decomposed into linear and non-
linear components. The nonlinear drift is possibly caused by
the spring age, temperature, transportation, and tilt (Reudink
et al. 2014). Since the drift can be always approximated by a
linear function over a short time period for any gravimeter in
good condition, the piecewise linear model is suitable to esti-
mate the drift rate of gravimeter. We cannot find an obvious
statistical feature in Fig. 2a, but if we plot the second-order
differences of the daily drift rate as a histogram, a Gaussian
distribution can fit them nicely, as shown in Fig. 2b. In the
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Fig. 1 Short-term and long-term real drift features of the relative gravity
instrument. aA25 h’ continuous record byCG-5 gravimeter (No 1098).
b Fitting a linear drift model to 55 days’ records. c Fitting a piecewise
linear model to 55 days’ records. In (a), the solid blue line shows the
continuing gravity after removing the tidal effect. The solid black line
is the fitted drift values by the linear model. The black scatter dots are
the fitted residuals. In (b), the meanings of the solid blue and black lines
and the black scatter dots are the same in (a). The solid red line is the
fitted drift by a second-order drift model. In (c), the blue solid step line
is the fitted drift rate by the piecewise linear model. The black scatter
dots are the fitting residuals

next section, our adjustment model and related algorithm are
designed based on this feature.

Redundant observations at each station are necessary in
the relative gravity survey campaigns to eliminate the effects
of instrumental drift and observational noise. Figure 3

shows two types of commonly used field survey schemes,
with each letter denoting a station. Figure 3a shows the
triple-time survey scheme, and Fig. 3b the double-time
survey scheme. These redundant measurements help us to
reduce uncertainty. During the survey campaign, an average
of one or two gravity observations can be made each hour.
To improve efficiency, the double-time gravity survey is
carried out using two gravimeters. For the continental-scale
campaign, the triple-time survey with three gravimeters is
generally adopted to ensure the accuracy of gravity survey
data, because the average distance between adjacent survey
stations is hundreds of km. The balance between accuracy
and efficiency should be carefully considered. In this paper,
we proposed an alternative approach to estimate the temporal
variation of the drift rate by using redundant measurements
and employing the ABIC approach for the estimation of
trade-off hyper-parameters.

3 Methodology

In this section, we introduce a new adjustment method for
estimating gravity values in the case of long-term gravity
survey campaigns with multiple gravimeters. The method
mainly focuses on the processing of temporal variation of
the drift rate and stochastic noise. The input consists of rela-
tive GD data with noises of unknown variance and absolute
gravity data with errors of known variance. We assume that
the effects caused by the earth tide, ocean tide, air pressure,
and polar motion are reduced before the network adjustment.
Transient processes includingprecipitation, surfacedeforma-
tion, and temperature fluctuations at the stations during the
campaign are not taken into account for the time being.

3.1 Basic definitions and notation

First, we write out the observation equations used in this
study by revisiting the conventional gravity network adjust-
ment strategy for the relative gravity data. We start from the
observation equation for the relative gravity survey. This sur-
vey generally uses the GD between two adjacent stations
as the input to determine an optimal gravity value at each
station. In practice, the overall gravity survey needs to be
synchronously carried out by several teams using tens of
gravimeters. To improve observation accuracy, at least two
gravimeters are used for synchronous observation at each
station. Since the gravimeters may differ in observation per-
formance, this can be quantified with the variance of the
errors of corresponding relative gravity observations for each
gravimeter. The observation equation gives the relationship
between the input gravity differences and the unknown grav-
ity value written as follows:
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Fig. 2 Histograms of (a) fitted drift rate per day and (b) difference of drift rate per day. The histogram of fitted drift rate per day in Fig. 1c is shown
in Fig. 2a

Fig. 3 Two kinds of field survey
schemes for the relative gravity
observation

(4)

yk � xe(k) − xs(k) + dq(k)
(
t (e)k

)
− dq(k)

(
t (s)k

)
+ εk, k

� 1, 2, . . . , K ,

where yk is the k-th observed value of GD from the s(k)-th
station to the e(k)-th station; s(k) and e(k) are the start-
ing and ending station numbers corresponding to the k-th
observed GD, respectively; q(k) is the gravimeter by which
yk is obtained; xs(k) and xe(k) are the true gravity values at

the s(k)-th and e(k)-th stations, respectively; dq(k)

(
t (s)k

)
and

dq(k)

(
t (e)k

)
are the meter drifts at the observation times at

the starting and ending stations, respectively; and εk is the
observation error for yk , which is independently distributed
as Gaussian random variables with mean of 0 and variance
of σ 2

q(k).
Another basic equation is

gk � xw(k) + ε
(a)
k , k � 1, 2, . . . , Kg, (5)

where gk is the k-th observed value of absolute gravity at
stationw(k) and ε

(a)
k is the observation error for gk , assumed

to be independently and identically distributed according to a
Gaussian distribution with a mean of 0 and a known variance
σ 2
g .
We adopt the following notation throughout this article.

The numbers of observed stations, relative gravimeters, abso-
lute gravity observations, andGDobservations are N , P, Kg ,
and K , respectively, and K > N based on the redundant
observations. The number of drift rate estimates is M .

3.1.1 Data vector definitions

The vectors of the observedGDs, gravity values at the station,
estimated drift rates, and absolute gravity values are denoted
by y, x, v, and g, respectively. The gravity data vectors are
expressed as follows:

x � [x1, x2, . . . , xN ]
T

is the vector of gravity values at all the stations,
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g � [g1, g2, . . . , gKg

]T

is the vector of observed absolute gravity values, and

y � [y1, y2, . . . , yK ]
T

is the vector of observedGD values.Whenmultiple gravime-
ters are employed, we also use

yi � [yi1, yi2, . . . , yiKi

]T

to denote the vector of GD values observed by gravimeter i ,
and thus, by arranging GD values obtained by using the same
gravimeter in the same group,

y �
[
yT1 , yT2 , . . . , yTP

]T
.

The vector of the drift rates for all the gravimeters is

v �
[
vT1 , vT2 , . . . , vT1

]T
.

For the linear drift model, vi � [vi ] and when M time
intervals are used for estimating the nonlinear drift model
for gravimeter i , vi � [vi1, vi2, . . . , viM ]T.

If P gravimeters are used in the survey, the total number
of GDs can be calculated by

∑P
i�1 size

(
yi
) � K1 + K2 +

· · · + Kp � K ,where Ki , i � 1, 2, . . . , P, are the numbers
of GD observations by each gravimeter.

3.1.2 Matrix definitions

The matrices of relative gravity observation configurations,
observed durations of each GD, smoothness for drift rate
variations, and absolute gravity observation configuration are
denoted by A,D,B, and G, respectively.

The variances of observational noises, drift rate variations,
and absolute gravity observations are denoted by σ 2, σ 2

b ,

and σ 2
g , respectively. The weighted diagonal matrix of rela-

tive gravimeters, drift rate variation, and absolute gravity are
denoted by W,Wb, and Wg , respectively. In this case, Wg

with respect to the absolute gravity or basement station needs
to be known before adjustment.

If there are P relative gravimeters in total, the variances
of each observation value and the drift rate for the i-th
gravimeter are, respectively, denoted by σ 2

i and σ 2
bi , where

i � 1, 2, . . . , P . The corresponding matrices for the relative
gravity observation configuration, observed durations of each
GD, smoothness for drift rate variations, weights of relative
gravimeters, weights of drift rate variations, and weights for
absolute gravity are denoted by Ai ,Di ,Bi ,Wi , and Wbi ,
respectively. Please see Appendix A for a summary of this
notation.

3.2 Gravity network adjustment with linear drift
model

In gravity surveys, the GD data need to be adjusted because
of the existence of observation noise and gravimeter drift.
The absolute gravity observations can be used to establish the
network datumand improve the precision of adjustment. Net-
work adjustment, which combines the absolute gravity and
redundant relative gravity observations, generally determines
an optimal gravity value for each station by a least-squares
criterion (Torge 1989).

3.2.1 Basic equations

In the classical adjustment method, we suppose that the
observation noise is stochastic, following a normal distribu-
tion, and the gravimeter drift is a linear function. When only
one gravimeter is used, the basic equations for the network
adjustment can be written as

εk � yk −
[
xe(k) − xs(k) + dq(k)

(
t (e)k

)
− dq(k)

(
t (s)k

)]

∼ Normal
(
0, σ 2

q(k)

)
, k � 1, 2, . . . , K , (6)

ε
(g)
j � g j − xv( j) ∼ Normal

(
0, σ 2

g

)
, j � 1, 2, . . . , Kg.

(7)

For the linear drift model,dq(k)

(
t (e)k

)
− dq(k)

(
t (s)k

)
�

vq(k)

(
t (e)k − t (s)k

)
, we can write Eqs. (6) and (7) in the

matrix/vector format,

Ax + Dv − y ∼ Normal
(
0̃,W−1

)
(8)

Gx − g ∼ Normal
(
0,W−1

g

)
, (9)

or combine them into one equation:

SX − Y ∼ Normal
(
0̃, W̃−1

)
(10)

where

S �
[
A D
G 0

]
, X �

(
x
v

)
, Y �

(
y
g

)
, W̃ �

[
W 0
0 Wg

]

and ṽ � [v1, v2, . . . , vP ]T consists of the unknowndrift rates
for each gravimeter (seeAppendixB for the structure of these
matrices).

3.2.2 Likelihood function

Since the probability density functions (PDFs) for the obser-
vation errors εk, k � 1, 2, . . . K , of the GD values are the
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normal densities ϕ
(
·|0, σ 2

q(k)

)
, and for the observation errors

ε
(g)
j , j � 1, 2, . . . , kg, of the absolute gravity observations

are ϕ
(
·|0, σ 2

g

)
, the likelihood function, which is the joint

PDF combining the relative and absolute gravity observa-
tions, can be written as

L �
K∏

k�1

ϕ
(
εk |0, σ 2

q(k)

)
·
Kg∏

j�1

ϕ
(
ε
(g)
j |0, σ 2

g

)
. (11)

Considering Eqs. (8) and (9), the joint likelihood can be
written as

L �
P∏

i�1

[
det
(
2πW−1

i

)]−1/2

exp

[
−1

2

(
Ai x + Divi − yi

)TWi
(
Ai x + Divi − yi

)]

·
[
det
(
2πW−1

g

)]−1/2
exp

[
−1

2
(Gx − g)TWg(Gx − g)

]

(12)

or in short,

L �
[
det
(
2πW̃−1

)]−1/2
exp

[
−1

2
(SX − Y )T W̃(SX − Y )

]

In the above, matrix A exactly relates to the gravity survey
routes.

3.2.3 Solution for gravity values

If all the covariance matrices are given, the least-squares
network adjustment is equivalent to solving the following
general linear equation system.

ST W̃SX � ST W̃Y (13)

and the estimates of the gravity values and drift rates are
given by

X̂ �
(
ST W̃S

)−1
ST W̃Y . (14)

However, if the weighted matrix, Eq. (11), is unknown
before adjustment, maximum likelihood estimation (MLE)
can be used. The logarithmic form of likelihood, Eq. (12),
can be written as

−2 log L � (K + Ng
)
log(2π) +

P∑

i�1

Ki log(σ
2
i )

+ Ng log
(
σ 2
g

)
+

P∑

i�1

Ai x + Di di − y2i
σ 2
i

+
Gx − g2

σ 2
g

.

(15)

Since the variance of observed GDmeasured by gravime-
ter i is in the form of

σ̂ 2
i � Ai x + Divi − y2i

Ki
, i � 1, 2, . . . , P (16)

the likelihood in Eq. (15) can be rewritten as

−2 log L � (K + Ng
)
log(2π) +

P∑

i�1

Ki log
(
σ̂ 2
i

)

+ Ng log
(
σ 2
g

)
+ K + Ng. (17)

The errors of the estimates from the network adjustment
can be written as

� � diag
(
ST W̃S

)−1
. (18)

The residual gravity vector can be obtained in the form of

R � Y − SX̂ . (19)

In summary, by investigating the traditional gravity obser-
vation network adjustment method in the framework of
statisticalmultivariateGaussianmodels, an approach for esti-
mating the optimal weighted coefficient related to relative
gravimeter by means of minimizing Eq. (17) with the MLE
method is proposed naturally.

3.3 Bayesian gravity adjustment with nonlinear
drift model

In the above model, the variation of gravimeter drift is
assumed to be linear, that is, over the entire campaign period,
the drift rate of each gravimeter is expressed as a single value
vi � vi , i � 1, 2, . . . , P . In fact, most relative gravimeters
have drift rates that change with time during the gravity sur-
vey campaign. In this paper, we introduced a new nonlinear
model to incorporate the nonlinear drift variation for a rela-
tive gravimeter.

3.3.1 Smoothness prior for instrument drift

According to our knowledge of the drift rate of the spring-
type gravimeter, we assume that the variation of the drift
rate is smooth. In practice, the drift rate for one gravimeter
can be regarded as a constant over a short time interval. If
we divide the whole survey duration into T intervals, and
denote the drift rate in the j-th period ( j � 1, 2, . . . , T ) by
vi j , the drift rate vector can be written in the form of vi �
[vi1, vi2, . . . , viT ]T.
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This a priori assumption can be expressed by the following
model:

Bvi ∼ Normal
(
0,W−1

bi

)
, (20)

where B is the smoothing operator and Wbi �
diag

[
1

σ 2
bi

, 1
σ 2
bi

, · · · , 1
σ 2
bi

]

Mi

. In this paper, we use the second-

order differential operator, that is,

B �

⎡

⎢⎢⎢⎣

1 −2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

⎤

⎥⎥⎥⎦. (21)

Hereby, we estimate the optimal value of σ 2
b,i for each

gravimeter i by employing the empirical Bayesian method
together with other trade-off parameters.

3.3.2 Posterior distribution and ABIC

By the Bayesian theorem, the posterior likelihood is in the
form of

Posterior � ∫ L( y|v)π(v)dv

∫ π(v)dv

�
∫ · · · ∫ L( y|v)∏P

i�1 exp

(
− 1

2σ 2
bi
Bv2i

)
dv1 · · · dvP

∫ · · · ∫∏P
i�1 exp

(
− 1

2σ 2
bi
Bv2i

)
dv1 · · · dvP

,

(22)

where L( y|v) is the likelihood function from Eq. (11) and

π(v) �
P∏

i�1

exp

(
− 1

2σ 2
bi

||Bvi ||2
)

is the PDF for the a priori distribution of the drift rates of
all the gravimeters used, without knowing the normalizing
factor. The Bayesian estimation on the goodness of fit of the
model can be given by the ABIC. The optimal function is
supposed as

ABIC � − 2max[Posterior] + 2(No. of hyperparameters).
(23)

Here, by substituting the integral result of Eq. (22),
Eq. (23) can be rewritten as

ABIC � log det

(
W 0
0 Wg

)−1

+ log detS̄T W̄S̄

− log det+
(
2πBTWBB

)
+ logmin[U (X)]

+ 2 (No. of hyperparameters), (24)

where det+(·) is the product of all nonzero eigenvalues of
nonnegative definite matrix “·”, and

U (X) � (S̄X − Ȳ
)T

W̄
(
S̄X − Ȳ

)
. (25)

Please see Appendix B for the meanings of the notations in
the above equations.

In this model, hyper-parameters θ �{
σ 2
1 , σ 2

2 , . . . , σ 2
p, σ

2
b1, σ

2
b2, . . . , σ

2
bP

}
, including the 2P

unknown variances, need to be estimated by minimizing
the ABIC. If the number of hyper-parameters is small, the
direct searching method with a multiplier step can be used
for finding the minimum ABIC (Tamura et al. 1991). But in
this case, the number of hyper-parameters depends on the
number of gravimeters and days in the survey campaign.
Thus, a high-dimensional space searching problem has
to be faced. The nonlinear optimization methods need to
be used for speeding up the minimization of the ABIC.
Therefore, we employ the Nelder–Mead simplex nonlinear
optimization method (Nelder et al. 1965; see, Wright 1996,
for a review) in this study.

3.3.3 Solution of gravity vector

The estimated gravity values vector can be given as

X̂ �
(
S̄T W̄W̄

)−1
S̄T W̄Ȳ . (26)

The error estimation by the network adjustment can be
written as

Σ � diag
(
S̄T W̄S̄

)−1
, (27)

and the residual vector for the observations can be obtained
by

R � Ȳ − S̄X̂ . (28)

4 Model tests for the simulated data

In this section, we use a practical network of gravimeters
northwest of Beijing, China, and simulate the observation
data according to a practical measurement scheme. The sim-
ulated gravity data can help us to understand the efficiency
of Bayesian adjustment. Gaussian white noise and the instru-
ment drift rate were generated to evaluate the capability of
our adjustment theory. In the following tests, the observa-
tions between two adjacent stations are the input data for the
adjustment. Five tests on simulation datasets were designed,
including (1) investigating how to select the optimal weight
constraints related to multiple gravimeters in the combined
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Table 1 Results from optimally
weighted by the conventional
linear drift adjustment model in
Case 1

Gravimeter 1 Gravimeter 2

Drift rate
(mGal/day)

SD of GD noise
(µGal)

Drift rate
(mGal/day)

SD of GD noise
(µGal)

True values 0.60 11.63 0.30 4.21

Adjustment results 0.59±0.02 11.57 0.30±0.01 2.89

adjustment by means of MLE method, (2) verifying the
validity of the Bayesian adjustment for the stochastic nonlin-
ear drift rate model, (3) extending the Bayesian adjustment
method to the case ofmultiple gravimeters, and (4) analyzing
the sensitivity of input prior parameters in the adjustment.

In all the simulations, an actual observation route and time
scheme were used. Such a survey campaign generally takes
about 16 days. The intervals between the observations at two
successive stations range from 0.3 to 4 h, with an average of
about 0.7 h. In the simulation, the gravity values at all stations
are known, the drift models are predefined, and noises with
different features were added to the known gravity value at
each station. In the synthetic model data, the simulated time
spans between gravity observations cause meter drift and
stochastic noise is added to the observation values at each
station. The variation of random noise in the simulated time-
lapse gravity data was controlled within a level similar to that
of an actual CG5 m. We also simulated and added the grav-
ity variation derived by the theory earth tide and air pressure
related to specific times and locations based on recordings
from an actual field gravity survey campaign. In total, 202
GD observation values, which form up to eight loops, were
simulated for each gravimeter, and these were used to esti-
mate the gravity values at the 91 stations.

4.1 Case 1: Comparison between optimally
and equally weighted adjustment methods
for linear drift model
with instrument-dependent observational noise

In this case, wemainly aimed to compare the results from the
equally weighted and optimally weighted adjustment con-
straints. The records from two gravimeters were simulated.
The standard deviation (SD) of the white noise in the input
GD with meters 1 and 2 at all stations was 11.63 µGal and
4.21 µGal (Table 1), respectively. The initial SD estimation
of both GD values as input was 10 µGal. The rates of the
linear instrumental drifts, which were added to the gravity
observation, are listed in Table 1. The adjustment results for
the optimally weighted approach (Sect. 3.2) are shown in
Table 1. The SD of residual GD after adjustment was equal
to the prior estimation by the MLE.

The residuals of GDs from the two adjustment models
are shown in Fig. 4. In the case of the equally weighted
adjustment, the weights do not match the SDs of the GD

residuals. But the optimally weighted adjustment could esti-
mate the appropriate weights in this case. The GD residuals
after adjustment show clearly that the optimally weighted
adjustment can recover the noise level that was added to
the input. The differences between the adjustment results
and actual gravity values at 91 stations are also summarized
in Table 2, and they indicate that the optimally weighted
adjustment results are more robust than those of the equally
weighted approach.

This adjustment needs to be applied to a large-scale gravity
network, where tens of gravimeters are generally used for
measurement in the same time period. The adjustment results
are more accurate if the optimal weighting is applied based
on the likelihood function proposed in this paper to estimate
the optimally weighted values. The minimized process for
searching the optimal weights is shown in Fig. 5.

4.2 Case 2: Nonlinear drift rate model

In this case, records from gravimeters with nonlinear drift
rates were simulated. The purpose is to compare the adjust-
ment results between linear and stochastic drift rate mod-
els. For simplification, only the problem of adjusting one
gravimeter is discussed. Two datasets with different nonlin-
ear drift rate models were simulated for the experiment. The
temporal variations of the simulated drift rates are shown in
Fig. 6. The SD of the observed noise with models 1 and 2
was the same 3 µGal at all stations.

In this case, a duration of 16 days was used for the entire
gravity survey campaign. Bayesian and classical adjustments
were applied and compared. The smoothness of nonlinear
drift rates can be estimated by the Bayesian approach (min-
imizing the ABIC) as shown in Fig. 6.

The GD residuals can be used to validate adjustment
methods. Figure 7 shows the GD residuals in chronologi-
cal sequence. It is easy to see in Fig. 7a, c that non-stochastic
trends can be found in the processing of the GD residuals,
indicating that the hypothesis behind the linear drift model
is not suitable in this case and that the nonlinear drift rate
model should be considered. The GD residuals obtained
using the Bayesian adjustment are plotted in Fig. 7b, d.
The true standard deviation of the input noise for the GDs
is about 4.2 µGal, and the estimated SD of GD from the
Bayesian adjustment is about 4.1 µGal. These results ver-
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Fig. 4 Comparison in GD
residuals with two gravimeter
problems between the equally
weighted and optimally
weighted conventional
adjustment methods in case 1.
The points to the left of the red
lines represent the residuals of
GD by gravimeter No. 1 after
adjustment, and the points to the
right by gravimeter No. 2. a The
adjustment with equal weights,
b the adjustment with optimal
weight. The GD indices are
grouped by the observing
instruments

Table 2 Difference between the adjustment and real gravity values at
all stations for Case 1 (Unit: µGal)

Max Min SD Mean

Equally
weighted

14.08 −10.70 5.30 0.32

Optimally
weighted

6.85 −8.00 3.09 −0.92

ified that the Bayesian adjustment gives suitable posterior
estimation.

The ABIC value as a function of hyper-parameters σ 2 and
σ 2
b is shown in the contour image in Fig. 8. Since search-

ing the minimum value of ABIC is time-consuming, we
employed the simplex method (Lagarias et al. 1998) to boost
the speed of adjustment. The minimum ABIC value is equal
to−1004.1, as shown inFig. 8. The trade-off between the two
hyper-parameters, σ 2 and σ 2

b , balanced the smoothness of the
variation of the drift rate and the variance of GD residuals.

4.3 Case 3: Multi-gravimeter adjustment using
Bayesian adjustment method

In this case, we simulated a dataset in which two gravime-
ters are used to test the Bayesian adjustment algorithm.
Practically, double gravimeters are used in a gravity survey
campaign to reduce the effects by the offset change, tares,
outliers, and other random or system errors caused by instru-
ments and environments. This simulation model with double
gravimeters is designed for testing the potential advantages
and efficiency of the Bayesian adjustment.

The nonlinear variations of the drift rates are shown in
Fig. 9. In this case, the nonlinear drift features of the two
gravimeters are obviously different. The SD noises added to
the recordings formeters 1 and 2were 9.1µGal and 4.3µGal,
respectively. If the Bayesian adjustment is employed, four
hyper-parameters need to be estimated. For comparison, we
applied both the classical and Bayesian adjustment meth-
ods to estimate the gravity values for all 91 stations. The
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Fig. 5 Filled contour image for
the negative log-likelihood with
the two weights for case 1

results are shown in Fig. 10. It is clear that the results from
the Bayesian adjustment method are better than those from
the classical method. The SDs of GD residuals of Bayesian
adjustment for meters 1 and 2 are 8.7 and 4.2 µGal, respec-
tively, while for the classical adjustment, they are 7.0 and
8.8 µGal, respectively. The optimal SD given by the classi-
cal method is smaller than that given by the Bayesian results,
but the Bayesian method gives a value closer to the SD of
actual noise. Because the drift rate of meter 1 changed little,
the estimated drift rate of meter 1 was over-fitted on the basis
of linear drift rate model. However, the larger drift rate vari-
ation in meter 2 cannot be illustrated if using the linear drift
rate and the classical adjustment because the SD of 8.8 µGal
is far from its true value of 4.3 µGal.

Comparing the adjustment results to the true gravity val-
ues at all stations (Fig. 10), we can see that the Bayesian
adjustment is still better than the classical method with the
optimal weight classical adjustment method in case 3. The
details are summarized in Table 3.

4.4 Case 4: Sensitivity analysis for adjustment
of input parameters

In cases 1–3, the uncertainties caused by the reductions of the
tide and air loading are considered. To reduce such effects,
two suitable parameters, generally called earth TF and AA,
need to be used. In this section, we employ a sensitivity anal-

ysis approach to evaluate the potential effects caused by the
uncertainty in a priori parameters.

Significant daily gravity changes are caused by tidal forces
acting on the solid earth and oceans, and they range up to
0.3 mGal peak to peak (Hinze et al. 2013). The ocean tide
loading is generally less than 10% of the solid earth tide. The
value of TF generally varies over time and space owing to the
fact that the actual earth is not a rigid body. The regional tidal
factors can be estimated by the long-term continuous gravity
observations, such as for 1 year or longer. The TF value can
be approximated as 1.16 because its value is 1.1562 in the
two-degree preliminary reference earth model (Dehant et al.
1999). An accurate TF value is often used to generate a time
series of tidal gravity variation at a specific spatiotemporal
location. But the TF value is likely to change, due to various
factors, including the solid earth model, ocean tide loading
model, and latitude dependence. The general variation is pos-
sibly about 2% (Hinze et al. 2013).

However, only the non-tidal gravity signal is of interest
in a gravity survey campaign, and data are insufficient to
estimate the TF. Therefore, the TF value needs be given as
an a priori parameter before the gravity adjustment.

In addition, the atmosphere also affects gravity variation,
which adds up to 10% of the TF over a wide frequency range,
from minutes to seasonal periods (Crossley et al. 2013). A
scalar admittance as a good approximation relates observed
gravity to local pressure variation. A nominal AA value
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Fig. 6 Estimated nonlinear drift
rates for (a) model 1 and (b)
model 2 in Case 2 from the
Bayesian adjustment method.
The solid black lines show the
temporal variations of the drift
rates during the survey days.
The dotted blue lines show the
inversed variation of the drift
rate. The gray areas, which
contain the dashed line
segments, represent the
estimated standard deviation of
inversed drift rates

widely used is -0.3 µGal/hPa. The relationship includes the
attractionof the atmosphere above thegravimeter and loading
from air masses that elastically deform the crust (Warburton
and Goodkind 1977). The AA value may change between
−0.27 and−0.43µGal/hPa using different local-zone mod-
els (Merriam 1992). A frequency-dependent admittance is
also proposed and seen as a better approximation. The result-
ing difference between the two alternative approaches is not
significant at the 0.5-µGal level (Hinderer et al. 2007). In
general, the simple AA value is enough to remove the atmo-
spheric effects, and the AA correction is straightforward.

In this case, a sensitivity analysis of the simulated gravity
response with respect to the a priori model parameters was
carried out. The sensitivity runs were performed using the
simulated data. Sensitivities are reported as scaled sensitivi-
ties (SS) (Hill 1998):

SS � (�e/e)/(�p/p),

where e is the root-mean-square error (RMSE) of the gravity
value in the specific a priori parameters, �e is the change of
RMSE, p is the parameter value in the reference run, and �p
is the parameter change.

First, 5% and 10% errors of TF were applied to tidal cor-
rection before the network adjustment. The periodic earth
tide signal was mixed with the gravity time-series data. The
smoothed featurewasmore similar to the nonlinear drift grav-
ity variation, so it can be an error source that affects the
accuracy of the adjustment. Second, 5 and 10% errors of AA
were applied to the atmospheric effects correction before the
network adjustment.

In this case, we employed the nonlinear drift model with
noise for recordings from one gravimeter. The RMSE of
residual GD after adjustment was 4.13µGal using the exact a
priori parameters. From the SS variation with different a pri-
ori parameter errors (Table 4), the 10% AA uncertainty only
made the RMSE variation less than 0.01 µGal. The uncer-
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Fig. 7 GD residuals from fitting the classical (a, b) and Bayesian adjustment (c, d) methods. a and c are results from fitting model 1. b and d are
results from fitting model 2. BAY and CLS indicate the Bayesian and classical adjustments, respectively

Fig. 8 Contours of the ABIC
values in the Bayesian
adjustment with the nonlinear
drift rate (model 2) for Case 2
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Fig. 9 Estimates of the
nonlinear drift rates of the two
gravimeters in Case 3. The red
and blues lines are the simulated
and inverted drift rates for
gravimeters 1 and 2,
respectively. The solid lines
show the variation of the drift
rates used in the simulation. The
dotted lines show the inverted
results

Fig. 10 Difference between
results from two adjustments
and true gravity values in the
simulation for all 91 stations in
Case 3. The red solid lines
indicate the true gravity values

tainties related to the TF could affect the RMSE variation up
to 0.8 µGal. It is clear that the results are more sensitive to
TF than to AA, and the Bayesian adjustment results are sta-

ble because of the small variation of SS values. For the 10%
uncertainties with respect to the TF and AA, the sensitivity
is not significant.
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Table 3 Comparison between results from two adjustments and true
gravity values in the simulation for all the stations in Case 3 (Unit:
µGal)

Adjustment Max Min SD Mean

CLS 5.32 −21.71 4.72 −4.12

BAY 3.30 −11.75 3.03 −2.92

Table 4 Sensitivity test of uncertainty in prior parameters in Case 4

+5% +10% −5% −10%

TF RMSE (µGal) 4.36 4.93 4.30 4.82

SS 1.12 1.94 0.81 1.67

AA RMSE (µGal) 4.13 4.13 4.13 4.14

SS 0.0071 0.0078 0.017 0.016

TF means tidal factor. AA means atmosphere admittance

But the SS values are also related to the noise level in the
observed gravity data. If the noise feature can be estimated in
the actual gravity survey campaign, we can select the appro-
priate method to estimate the a priori parameters bymeans of
the sensitivity test. The corrections related to the controlled
uncertainty of a priori parameters should be applied to reduce
their effect on gravity before the gravity network adjustment
processing.

5 Processing actual gravity survey data

In this section, we apply the Bayesian adjustment algorithm
to two gravity observation datasets from North China.

5.1 Example 1

The first observation network, which has 95 stations, 103
segments and eight circuits, is shown in Fig. 11a. The field
observation for this network is performed twice annually. The
gravity survey campaign for our first dataset was carried out
in September 2014, and a total of 412 measurements were
obtained for gravity variations using dual gravimeters over
16 days.

We applied both the Bayesian and the classical adjust-
ment approaches to this dataset. The spatial differences
between the linear and nonlinear drift rate models for adjust-
ment are shown in the geometrical route map in Fig. 11a.
Results showed the existence of gravity differences of a few
tens of microgals. Significant differences between the two
approaches appear in regions close to the edge of the net-
work in Fig. 11a.

The fitting residuals for the actual GDs are plotted as
Fig. 11b and 11c, and a histogram of the residuals is shown
in Fig. 11d. It is obvious that the residuals from the Bayesian

method are smaller and more like stochastic noise than those
from the classical method. If using a simplistic linear drift
model to estimate the gravity values, the residuals in Fig. 11c
do not satisfy the assumptions of stochastic noise; rather, they
show a systematic trend with time.

Thus, the existence of nonlinear drift in the actual gravity
surveydata has beendemonstrated. Figure 11e shows the esti-
mated temporal changes of the drift rates using the Bayesian
adjustment approach with the related uncertainties. The vari-
ations of the drift rates are nonlinear and different from each
other. The variation pattern of actual drift rates is similar to
the simulated cases. Therefore, the Bayesian adjustment is
effective and robust for the practical case.

5.2 Example 2

The second dataset is from a large-scale gravity survey cam-
paign in a network containing 155 stations, 181 segments
and 20 circuits (Fig. 12), carried out during the period from
August 4 to September 25, 2015. Three gravimeters (CG-5
#1097, #1098, and #1099) were used for this survey. In total,
780 measurements of gravity differences between adjacent
stations were observed over 53 days.

In this case, the network contains three absolute grav-
ity stations (BJT, ZJK, and DX). The detailed configuration
and results for the absolute gravity measurement are shown
in Table 5. For evaluating the effectiveness of the Bayesian
adjustment method, we designed the following experiment:
Only one or two absolute gravity values were used for adjust-
ment, and the absolute gravity values at the other stations
were compared with their corresponding values obtained
using the two adjustment methods.

We sequentially used the absolute gravity values from the
BJT, ZJK, and DX stations in the adjustment, and the other
twoabsolute gravity valueswereused tovalidate these adjust-
ments. The results, given in Table 6, show that the Bayesian
adjustment method produced results better than those of the
conventional method. When both absolute gravity values
from the BJT and DX stations were used in the adjustment,
the Bayesian approach (last three rows in Table 6) still pro-
duced better estimates than did the conventional method. The
spatial differences between the linear and nonlinear drift rate
models for adjustment are shown in the geometrical route
map in Fig. 12. The figure shows the existence of gravity
differences of a few tens of microgals. Again, significant dif-
ferences between the two approaches are visible in regions
close to the edge of network in Fig. 12. Gravity values at
stations along the same path in Fig. 12 potentially were mea-
sured on the same day. If using a linear drift rate model or
classical adjustment method to deal with this network, sys-
tematic biases might be resulted from periods when the drift
rate of the gravimeter changes.
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Fig. 11 a Route map of gravity survey campaign in the Beijing region
and differences between gravities at each station estimated by the lin-
ear and nonlinear drift rate models in the survey during September
2014. b GD residuals from the Bayesian adjustment method with two
gravimeters. c Same as (b) but from the classical adjustment method.
d Histograms of GD residuals in (b) and (c). e Estimated drift rates

of two gravimeters, Nos 1099 and 1097, and their error bands. In (a),
the triangles mark the locations of cities in this area. In (b) and (c), the
data series left to the vertical red straight lines are the GD residuals for
gravimeter No. 1099 after adjustment and the data series to the right are
for gravimeter No. 1097
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Fig. 12 Differences between estimated gravity values by the linear and nonlinear drift rate models at each station in the extended observation
network when different absolute gravity stations are using the base observations: a BJT, b ZJK, c DX and d BJT & DX

Table 5 Absolute gravity
stations AG station Absolute gravity

value (µGal)
Measurement date Duration (h) Drops

ZJK 1002.0±2.1 July 27, 2015 17 3400

DX 7524.8±1.7 July 25, 2015 15 3000

BJT 544.5±1.5 September 12, 2015 30 6000

The constant number has been reduced from three absolute gravity values. The A10 (#034)-type absolute
gravimeter by Micro-G has been used for measurement

6 Conclusions

Relative gravimeters have been widely used in terrestrial
gravity measurement. Designing and using a suitable model
to estimate the nonlinear drift of relative gravimeters is a
key point of gravity data adjustment. The drift and noise are
the two main causes of errors and can be estimated by using
redundant gravity observations, including addingmore abso-
lute gravity observations and increasing the number of loops
in the survey network,with suitable data processingmethods.
To dealwith the drift problem,we presented a novel approach
for gravity campaign data processing, based on the Bayesian
analysis theory. The basic assumption is that the variation

of instrument drift rate is smooth over the entire campaign
period for any relative gravity meters that are in good condi-
tions. Such a prior constraint of the smoothness for the drift
rate has been introduced to replace and to improve the linear
drift model. On the basis of the “principle of parsimony,”
appropriate unknown hyper-parameters were used to esti-
mate the model using ABIC to balance the fitting residuals
and the smoothness of the drift rate. Our Bayesian adjust-
ment approach gives a good trade-off to avoid over-fitting
problems.

In our results from model testing and error analysis, this
new Bayesian approach for the network gravity adjustment
was shown to be effective and straightforward for estimat-
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Table 6 Adjustment result when
using different absolute gravity
stations as known (unit: µGal)

AG stations used
in calculation

AG station BAY CLS

Est. value Diff Est. value Diff

BJT ZJK 1001.7±13.53 −0.3 1000.5±14.33 −1.5

DX 7574.4±20.69 49.6 7585.7±21.43 60.9

BJT 544.5±1.54 0.0 544.5±1.54 0.0

ZJK ZJK 1002.0±2.07 0 1002.0±2.07 0

DX 7574.7±17.56 49.9 7587.1±17.95 62.3

BJT 544.8±13.60 0.3 546.0±14.39 1.5

DX ZJK 952.0±17.49 −50.0 939.6±17.91 −62.4

DX 7524.8±1.67 0 7524.8±1.67 0

BJT 494.9±20.67 −49.6 483.6±21.44 −60.9

BJT & DX ZJK 983.7±11.39 −18.3 977.6±11.91 −24.4

DX 7525.1±1.66 0.3 7525.1±1.67 0.3

BJT 544.3±1.54 −0.2 544.2±1.54 −0.3

ing the temporally complicated variation of meter drift rate.
Particularly, if only linear drift exists in the relative grav-
ity measurement, then there is little difference between this
approach and the classical adjustment method. The testing
results also showed that the Bayesian adjustment method is
robust and adaptive for solving a similar problem for irregular
drift rates. The new approach balances the survey productiv-
ity and the accuracy of gravitymeasurement and is especially
powerful when returning to a base station takes more than
24 h in long-distance gravity surveys, when the gravimeter
has a high-ordered drift rate, and when the environment or
transportation is complex during the campaign.

In our experience, the computational load was affordable
and could be handled by the majority of modern personal
computers.Apotential difficultywith this approach is that the
dimensionality could increase dramatically if a large num-
ber of different gravimeters are used in the same survey
campaign.TheNelder–Mead simplexnonlinear optimization
method used in this work is more effective than other direct
searching methods to optimize the joint likelihood function.
Parallel computational techniques will be used to improve
the computational efficiency in future work.

In summary, the objective Bayesian approach is suitable
and powerful for reducing the effects of meter drift and
stochastic noise in terrestrial gravity surveys performed in
a large-scale and complicated network.
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Appendix A: List of notations

Notation Description

Integers

P Number of gravimeters used in the survey

N Number of gravity stations

K , Ki Total number of GD values and number of
GD values observed by gravimeter i

M, Mi Total length of the drift rate vector for all
the gravimeters and length of the drift
rate vector for gravimeter i

Kg Number of absolute gravity observations

Matrices (See Appendix B for details)

A The configuration related to the observed
sequences between two adjacent gravity
stations for the entire survey

Ai The configuration related to the observed
sequences between two adjacent gravity
stations for gravimeter i

D The configuration for all the durations
between the two adjacent gravity
observations used to estimate the drift

Di The configuration for all the durations
between the two adjacent gravity
observations for Gravimeter i

G The configuration related to the absolute
gravity observations
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Notation Description

B The smoothness configuration matrix for
drift rate variation for all the
gravimeters. The second-order model
used in this paper

Bi The smoothness configuration for drift
rate variation for Gravimeter i . The
second-order model used in this paper

S, S̄ The combination related to the observed
configurations

Wi The weight diagonal matrix of relative
gravimeter i , composed of the reciprocal
of each relative gravimeter variance σ 2

i

W The weight matrix of all relative
gravimeters,
W � diag [W1,W2, . . . ,WP ]

Wg The weight diagonal matrix of absolute
gravity, which has been given before
adjustment, composed of the reciprocal
of each absolute gravimeter variance σ 2

g

Wbi The weight diagonal matrix of variations
of drift rates for gravimeter i , composed
of the reciprocals of the variances σ 2

b for
variations of each drift rate.

Wb The weight matrix of the variations of
drift rates for all the gravimeters,
Wb � diag [Wb1,Wb2, . . . ,WbP ]

W̃, W̄ The combined matrix related to all the
weighted diagonal matrices for the
conventional and the Bayesian
adjustment methods

∗T The transposition of matrix*

Vectors

y The GD vector from the observation,
which has been given before adjustment

x The gravity value vector at all stations,
which will be estimated by adjustment

v The drift rate vector for all relative
gravimeters, which will be estimated by
adjustment

g The known absolute gravity values, which
has been given before adjustment

X �
(
x
v

)
Combined vector of x and v

Y �
(

y
g

)
Ȳ �

⎛

⎝
y
g
0̃

⎞

⎠ Combined vectors of y and g
Combined vectors of y and g and zeros

Appendix B: The structure of Matrices

In Eq. (10) in Sect. 3.2, for the conventional adjustment
model, matrices A and G are the relative and absolute grav-
ity observation configurations, respectively. D consists of
the durations for observing each GD. These matrices can
be defined by:

A � [ξk j
]
K×N , ξi j �

⎧
⎨

⎩

−1, if s(k) � j
1, if e(k) � j
0, otherwise

; G � [ηi j
]
Kg×N ,

ηi j �
{
1, if v(i) � j
0, otherwise

D � [δk j
]
K×P , δi j �

{
t (e)k − t (s)k , if q(k) � j
0, otherwise

(B.1)

The weight matrices have a diagonal form:

W � diag

[
1

σ 2
q(1)

,
1

σ 2
q(2)

, . . . ,
1

σ 2
q(K )

]
,

Wg � diag

[
1

σ 2
g

,
1

σ 2
g

, . . . ,
1

σ 2
g

]

Kg

; (B.2)

If we re-order the elements of the abovematrices by grouping
them according to the used instrument, then

y � [ yT1 , yT2 , . . . , yTP
]T

A �

⎡

⎢⎢⎢⎢⎢⎣

[A1]K1×N

[A2]K2×N

· · ·
[AP ]KP×N

⎤

⎥⎥⎥⎥⎥⎦
, D �

⎡

⎢⎢⎢⎢⎢⎢⎣

[D1]K1×1 0 · · · 0
0 [D2]K2×1 · · · 0
...

...
. . .

...

0 0 · · · [Dp
]
Kp×1

⎤

⎥⎥⎥⎥⎥⎥⎦

W̄ �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[W1]K1×K1 0 · · · 0 0

0 [W2]K2×K2 · · · 0 0
...

...
. . .

...
...

0 0 · · · [Wp
]
Kp×Kp

0

0 0 · · · 0
[
Wg
]
Ng×Ng

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Wi �

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1/
σ 2
i

0 · · · 0

0 1/
σ 2
i

· · · 0

...
...

. . .
...

0 0 · · · 1/σ 2
i

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Ki×Ki

, i � 1, 2, . . . p;

Wg �

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
/

σ 2
g

0 · · · 0

0 1
/

σ 2
g

· · · 0

...
...

. . .
...

0 0 · · · 1
/

σ 2
g

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Ng×Ng

(B.3)

In Sect. 3.3, for the Bayesian adjustment model, the matrices
in Eqs. (24) and (25) are written in detail as:
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W̄ �
⎛

⎝
W 0 0
0 Wg 0
0 0 Wb

⎞

⎠ and S̄ �
⎡

⎣
A D
G 0
0 B

⎤

⎦ �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 D1 0 · · · 0
A2 0 D2 · · · 0
...

...
...

. . .
...

AP 0 0 · · · DP

G 0 0 · · · 0
0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · BP

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Wb �

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

[
1/

σ 2
b1

]

T×T
0 · · · 0

0
[
1/

σ 2
b2

]

T×T
· · · 0

...
...

. . .
...

0 0 · · ·
[
1/

σ 2
bP

]

T×T

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(B.4)
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