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Abstract

For sensitive detection of anomalous seismicity such as quiescence and activation in a given region, we need a suitable

statistical reference model that represents a normal seismic activity in the region. The regional occurrence rate of the earthquakes is

modeled as a function of previous activity, the specific form of which is based on empirical laws in time and space such as the

modified Omori formula and the Utsu–Seki scaling law of aftershock area against magnitude, respectively. This manuscript

summarizes the development of the epidemic type aftershock sequence (ETAS) model and proposes an extended version of the best

fitted space–time model that was suggested in Ogata [Ogata, Y., 1998. Space–time point-process models for earthquake

occurrences, Ann. Inst. Statist. Math., 50: 379–402.]. This model indicates significantly better fit to seismicity in various regions

in and around Japan.
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1. Introduction

Seismic quiescence and activation have been attract-

ing attention as the precursors to a large earthquake,

possibly providing useful information on its location,

time and/or size (Inouye, 1965; Utsu, 1968; Ohtake et

al., 1977; Wyss and Burford, 1987; Kisslinger, 1988;

Keilis-Borok and Malinovskaya, 1964; Sekiya, 1976;

Evison, 1977; Sykes and Jaume, 1990). Ohtake (1980)

and Kanamori (1981) reviewed the studies of seismic

quiescence, illustrating gaps in space–time earthquake

occurrences, and hypothesizing physical mechanisms.

On the other hand, Lomnitz and Nava (1983) argued

that quiescence is merely due to the reduction of after-

shocks of previous large earthquakes. They simulated a

space–time cluster process to illustrate deceptive seis-
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mic gaps and quiescences, and claimed that these pro-

vide little predictive information about the occurrence

time or the magnitude of the next large event.

Thus, it has been difficult to discuss instances of

quiescence clearly in the presence of complex after-

shock activity. Also, the quiescence does not always

appear clearly, especially in periods and areas where the

activity is high. The appearance of the quiescence also

depends on a threshold magnitude of the earthquakes in

the data. Indeed, the recognition of seismic anomalies

appears to be subjective and still seems under develop-

ment, and even controversial.

To overcome these difficulties we first need to use a

practical statistical space–time model that represents the

ordinary seismic activity, rather than carrying out a

declustering algorithm that removes aftershock events

from a catalog. Using a full homogeneous dataset, the

successful model should enable us to detect anomalous

temporal deviations of the actual seismicity rate from
(2006) 13–23
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that of the modeled occurrence rate. Indeed, the tem-

poral ETAS (Epidemic Type Aftershock Sequence)

model that ignores the spatial factor, has successfully

detected quiet periods relative to the modeled rate by

the transformation of occurrence times (Ogata, 1988,

1989, 1992, 2001; Ogata et al., 2003a).

There are already a number of space–time point-

process models that take aftershock clusters into ac-

count (Kagan, 1991; Vere-Jones, 1992; Musmeci and

Vere-Jones, 1992; Ogata, 1993, 1998; Rathbun, 1993,

1994; Schoenberg, 1997; Console and Murru, 2001;

Zhuang et al., 2002; Console et al., 2003). In particular,

the epidemic type aftershock sequence model (ETAS

model; Ogata, 1988) is extended by Ogata (1998) to

several space–time models that are constructed based

on both empirical studies of spatial aftershock cluster-

ing with some speculative hypotheses. Goodness-of-fit

of these are compared in order to judge the best prac-

tical space–time model among them for the application

to both offshore interplate activity and intraplate activ-

ity inland, in and around Japan. The optimal space–time

ETAS model is then extended to the hierarchical Bayes-

ian model (Ogata et al., 2003b; Ogata, 2004). However,

the diagnostic analysis based on the stochastic declus-

tering algorithm reveals a significant bias in the spatial

scaling factor in the model (Zhuang et al., 2004). The

purpose of the present paper is therefore to propose a

better fitted model that reduces the bias.

2. Development of the ETAS model

2.1. Epidemic type aftershock sequence model

The typical aftershock decay is represented by the

Modified Omori function,

m tð Þ ¼ K t þ cð Þ�p; K; c; p; parametersð Þ; ð1Þ

initiated by the main shock at time origin t=0. This

formula was proposed by Utsu (1957, 1961) from fits to

many datasets as the extension of the Omori law

(Omori, 1894). This formula remains the most widely

used model for typical aftershock rate decay. To esti-

mate the coefficients, Ogata (1983) proposed a method

which maximizes the log likelihood function

lnL hð Þ ¼
XN
i¼1

lnm tið Þ �
Z T

S

m tð Þdt; h ¼ K; c; pð Þ;

ð2Þ

with respect to K, c and p, where {ti, i =1,2, . . .,N} is a

series of occurrence times of aftershocks in the time

interval (S,T) days. Typically, the Modified Omori
formula holds for quite a long period in the order of

some tens of years or more, depending on the back-

ground seismicity rate in the neighboring area. See

Utsu et al. (1995), and Ogata and Shimazaki (1984).

As we consider small aftershocks, however, occur-

rence time clustering of the events within the sequence

becomes apparent. Thus, aftershock activity is not al-

ways best predicted by the single Modified Omori

function, especially when it includes the conspicuous

secondary aftershock activities of large aftershocks, as

demonstrated in Guo and Ogata (1997) and Ogata et al.

(2003a). Indeed, we see cascading complex features of

aftershocks, such as interactively triggered aftershocks,

including those among off-fault regions, as discussed in

Felzer et al. (2002). Therefore, we assume that every

aftershock can trigger further aftershocks or remote

events, and that the occurrence rate at time t is given

by a (weighted) superposition of the modified Omori

functions shifted in time

kh tð Þ ¼ l þ
X
j:tjbtf g

ea Mj�Mcf gm t � tj
� �

; ð3Þ

where l (shocks/day) represents the rate of the back-

ground seismicity, and the summation is taken over

every j-th aftershock occurred before time t (days).

The weighted size of its aftershocks is made as the

exponential function of its magnitude Mj in accor-

dance with the study by Utsu (1970), where Mc

represents the cut-off magnitude of the fitted data.

The coefficient a (magnitude�1) measures the effi-

ciency of a shock in generating its aftershock activity

relative to its magnitude. For example, the a-value for

Japanese earthquake swarm activity has been found to

scatter in the range [0.35,0.85], in contrast to non-

swarm activity which is characterized by higher

values, namely, in [1.2,3.1] (Ogata, 1992). Note that

K (shocks/day) in the m-function represents the stan-

dardized quantity by exp{a(Mi�Mc)}, which mea-

sures the productivity of the aftershock activity

during a short period right after the mainshock (cf.

Utsu, 1970; Reasenberg and Jones, 1994). We call Eq.

(3) the ETAS (epidemic-type aftershock sequence)

model, which was originally proposed to model the

general seismic activity in a given region (Ogata,

1988, 1992), but which may also accurately be applied

to an aftershock sequence itself (Ogata, 1989, 2001;

Guo and Ogata, 1997; Ogata et al., 2003a).

For a sequence of occurrence times with associated

magnitudes, we can estimate the parameters h =(l,K,
c,a,p) of the ETAS model that are common to all i, by

maximizing the log-likelihood function that is of the
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same form as the one in Eq. (2) with the exception that

the Modified Omori intensity function m(t) is replaced
by the occurrence rate kh(t) of ETAS model. See Utsu

and Ogata (1997) for computational codes and technical

aspects, and Helmstetter and Sornette (2002), for ex-

ample, for some discussions of the statistical features of

the ETAS model.

2.2. Space–time ETAS model

Consider point-process models for the data of occur-

rence times and locations of earthquakes, whose mag-

nitudes are equal to or larger than a certain threshold

(cut-off) magnitudeMc. The occurrence rate k(t,x,y|Ht)

of a space–time point process is mathematically defined

in terms of the occurrence probability of an event at

time t and the location (x, y) conditional on the past

history of the occurrences such that

Prob an event in t; t þ dt½ 	
 x; xþ dx½ 	
 y; yþ dy½ 	jHtf 	

¼ k t; x; yjHtð Þdtdxdyþ o dtdxdyð Þ

where Ht ={(ti,xi,yi,Mi,Si); tib t} is the history of

occurrence times {ti} up to time t, with corresponding

epicenters {(xi, yi)}, magnitudes {Mi} and 2
2-matri-

ces {Si} for anisotropic clusters (see the model Eqs.

(5)~(7) below and Appendix). Hereafter, for simplicity,

we write k(t,x,y) in place of k(t,x,y|Ht). Also, the

space–time ETAS model is an extension of the above

ETAS model, satisfying the relation
R R

k(t,x,y)dxdy =
k(t) where k(t) represents the ETAS model (3). Con-

sider a space–time occurrence intensity kh(t,x,y) at

time and location (t,x,y), where kh(t,x,y) dtdxdy is

the probability of an earthquake occurring in the infin-

itesimal space–time volume [t, t+dt)
 [x, x+dx)
 [ y,

y +dy). As in the typical space–time extensions of the

ETAS model, Ogata (1998) considered the separable

form in time and space clustering effects, and compared

the following models expressed by

kh t; x; yð Þ ¼ l x; yð Þ þ
X
j:tjb tf g

m t � tj
� �


 g x� xj; y� yj;Mj �Mc

� �
; ð4Þ

where

g x� xj; y� yj;Mj �Mc

� �
¼ exp � 1

2

x� xj; y� yj
� �

Sj x� xj; y� yj
� �t

dea Mj�Mcð Þ

" #

ð5Þ
or

g x� xj; y� yj;Mj �Mc

� �

¼ ea Mj�Mcð Þ

x� xj; y� yj
� �

Sj x� xj; y� yj
� �t þ d

h iq ð6Þ

or

g x� xj; y� yj;Mj �Mc

� �
¼

x� xj; y� yj
� �

Sj x� xj; y� yj
� �t

ea Mj�Mcð Þ þ d

" #�q

ð7Þ

where Sj is an adimensional 2
2 positive definite

symmetric matrix, and (x, y)t indicates the vector trans-

pose. The square brackets have dimension of degree2

where bdegreeQ corresponds to the global distance in

latitude (i.e., 111.11 km) throughout the present paper.

The quadratic form within the brackets indicates that

the aftershocks are spatially distributed with ellipsoidal

contours. Indeed, Utsu and Seki (1955) and Utsu (1969)

used an ellipsoid to measure aftershock area instead of a

rectangle. Such an ellipsoid reflects not only the ap-

proximate shape of the ruptured fault and its dip angle,

but also the location errors of the aftershock hypocen-

ters. The logarithm of the aftershock area is highly

correlated with the main shock’s magnitude, leading

to the famous Utsu–Seki law, the extension of which

is represented by the denominator ea(Mi�Mc) in the

model (4). The inverse power decay of the aftershock

distribution against the distance takes the remote trig-

gering phenomena into account.

It is often the case that the epicenter of a mainshock

is located on the margin of its aftershock area, because

the epicenter corresponds to the location of earthquake

fracture initiation. For such a mainshock, the epicenter

location in the catalog is not suitable in the model in

(4). Therefore, we replace the mainshock’s epicenter

coordinates with the centroid of the aftershocks (the

mean coordinates of the aftershocks) for the model (4).

Such centroid of aftershocks could be closely related to

the centroid of the ruptured fault determined in the

Harvard CMT catalog due to Dziewonski et al.

(1981). Also, spatial distributions of aftershock epicen-

ters are not usually isotropic owing to the aforemen-

tioned reasons. The compiling procedure for the

centroid of clusters and also the matrices Sj represent-

ing the ellipsoid of anisotropic clusters are summarized

in the Appendix. Such a recompiled dataset is useful in

the model (4) for some significantly large earthquakes,

whereas for the remaining supermajority of events, the
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centroid can be taken as the epicenter of the original

catalog, and Sj as the identity matrix.

Given the recompiled dataset of origin times and

space coordinates of earthquakes together with their

magnitudes and matrices {(ti, xi, yi, Mi, Si); MizMc,

i=1, . . .,n} during a period [0, T] and in region A, we

can calculate the log-likelihood function of the param-

eter h =(l,K,c,a,p,d,q) characterizing the space–time

point-process model, which is given by

lnL hð Þ ¼
XN
i¼1

lnkh ti; xi; yið Þ�
Z T

S

Z Z
A

kh t; x; yð Þdtdxdy:

ð8Þ

Interested readers are referred to Daley and Vere-

Jones (2002; Section 7) for the derivation of this for-

mula and Ogata (1998) for the numerical calculations.

The maximum likelihood estimate (MLE) ĥ =

(l̂, K̂, ĉ, â, p̂, d̂, q̂) is the one that maximizes the function.

The physical dimensions of these parameters are pro-

vided in Table 1.

For the comparison of goodness-of-fit of the com-

peting models to a dataset, Akaike’s Information Cri-

terion (AIC; Akaike, 1974) is useful. The statistic

AIC=�2 lnL(h)+2dim(h) is computed for each of

the models fitted to the data. In comparing models

with a different number of parameters, adding the

quantity 2dim(h) roughly compensates for the addi-

tional flexibility which the extra parameters provide.

The model with the lower AIC-value is taken as

giving the better choice for forward prediction pur-
Table 1

The MLEs of space–time ETAS model fitted to the three datasets 1926–19

Model lw K̂ ĉ â

Unit Events/day/degree2 Days Magn

Off the east coast of Tohoku District (Region A) M4z0.5, 4333 events

(7) 0.707
10�3 0.967
10�4 0.836
10�2 1.281

(10) 0.711
10�3 0.988
10�4 0.840
10�2 1.962

(11) 0.708
10�3 0.106
10�3 0.842
10�1 1.273

Central and western Honshu (Region B) Mz4.0, 3007 events

(7) 0.335
10�3 0.167
10�3 0.514
10�2 0.910

(10) 0.337
10�3 0.171
10�4 0.520
10�2 0.935

(11) 0.330
10�3 0.148
10�3 0.512
10�2 0.972

All Japan data (Region C) Mz5.0, 4586 events

(7) 0.985
10�5 0.274
10�3 0.740
10�2 1.113

(10) 0.101
10�4 0.290
10�3 0.748
10�2 1.154

(11) 0.101
10�4 0.247
10�3 0.745
10�2 1.626

For each dataset the AIC-values are given relative to the value of the model (

AICA=32897.4, AICB=15836.7 and AICC=45161.4 for the dataset from r

Ogata (1998). * Indicates the smallest AIC value among the models (7), (1
poses. Insofar as it depends on the likelihood ratio,

the AIC can also be used as a rough guide to the

model testing. As a rule of thumb, in testing a model

with k +d parameters against a null hypothesis with

just k parameters, we take a difference of 2 in AIC

values as a rough estimate of significance at the 5%

level.

Ogata (1998) compared the goodness-of-fit of the

three cases (5)–(7) of the models for the following cases

where:

C1. Homogeneous Poisson field for the background

seismicity, l(x,y)=l =const., and isotropic clus-

tering, i.e., Sj=2
2 identity matrix;

C2. Non-homogeneous Poisson field for the back-

ground seismicity, l(x,y)=ml0(x,y) where

l0(x,y) is a baseline-spline-surface, and isotropic

clustering, i.e., Sj=2
2 identity matrix;

C3. Homogeneous Poisson field for the background

seismicity, l(x,y)=ml0(x,y) where l0(x,y) is a

baseline-spline-surface, and anisotropic cluster-

ing, Sj =2
2 positive-definite symmetric matrix

depending on j (cf., Appendix) and the center of

each cluster (xj, yj) is modified to be the centroid

(average) of the coordinates of the aftershocks.

According to Ogata (1998) the AIC always selected

the model (4) with (7), the consequences of which are

as follows:

R1. The triggered clusters in space extend beyond the

traditional aftershock regions, indicating a much
95

ĉ p̂ d̂ q̂ AIC

itude�
1

Degrees2

1.281 0.909 0.184
10�2 1.565 0.0

1.326 0.910 0.203
10�2 1.570 0.6

(1.15) 0.910 0.222
10�2 1.571 �0.6*

0.910 0.961 0.341
10�3 1.405 0.0

0.740 0.961 0.403
10�3 1.408 �3.2*

(1.15) 0.960 0.261
10�3 1.397 19.0

1.113 0.910 0.434
10�2 1.513 0.0

0.891 0.911 0.552
10�2 1.524 �13.2*

(1.15) 0.910 0.413
10�2 1.515 �0.7

7) for easier comparison. The original AIC values of the model (7) are

egions A, B, and C, respectively, which are the same values given in

0) and (11).
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more diffuse boundary with power law decay

rather than a more clearly defined region with a

fairly sharp boundary converging faster than the

exponential decay.

R2. There may perhaps be two components (near field

and far field) with different characteristics; the

near field component corresponds to the tradition-

al aftershock area around the ruptured fault, and

the far field component may relate to the so called

the daftershocks in wide senseT such as immigra-

tions of earthquake activity or causal relations

between distant regions, caused by tectonic

changes of the stress-field due to the rupture or

dynamic triggering of the seismic waves.

R3. The cluster regions scale with magnitudes in

close agreement with the Utsu–Seki formula.

3. Extension of the best fitted space–time model

Using the models (4) with (5)~(7), Zhuang et al.

(2004) implemented the stochastic declustering of a

data set from Hypocenter Catalog of the Japan Meteo-

rological Agency (JMA) in order to make diagnostic

analysis of space–time features of clusters using the

space–time ETAS models. The majority of the diagnos-

tic results show that the functions for each component

in the formulation of the above best space–time ETAS

model (4) with (7) confirms the superiority to, and

shows graphically better fit to various declustered sta-

tistics than the model (4) with (5). In particular, it is

shown that the scale of the triggering region is still an

exponential law as formulated in (7). However, one of

the important diagnostic features is that some system-

atic deviation (bias in slope) is seen from the expected

number of offspring (cf. Fig. 2a in the present paper) for

the considered data from a central Japan region that is

defined in Section 4. This suggests us that some modi-

fication of the model is desirable.

In Ogata (1998), the common standard form inclu-

ding the models (5)~(7) is given by the multiplication of

normalized time and space density distributions besides

the multiplication of size function in such a way that

g x; y;Mð Þ ¼ j Mð Þ 
 p� 1ð Þcp�1

t þ cð Þp


 1

pr Mð Þ h
x; yð ÞS x; yð Þt

r Mð Þ


 �� 

ð9Þ

where h(x,y) represents the different forms in (5)~(7),

and the size function is assumed to be j(M)=

const.
r (M)~eaM in the paper.
Now, the point of the present extension is to remove

the constraint between j(M) and r(M). This leads to

the new model

g x� xj; y� yj;Mj �Mc

� �
¼ e a�cð Þ Mj�Mcð Þ



x� xj; y� yj
� �

Sj x� xj; y� yj
� �t

ec Mj�Mcð Þ þ d

" #�q

;

ð10Þ

which requires the eight parameters h =(l,K,c,a,c,
p,d,q). In the following sections, we will compare

this with the model (4) with (7). Furthermore, by fitting

least squares to the diagnostic plots, Zhuang et al.

(2004) implies that

c̃c ¼ 0:50loge10c1:15; ð11Þ

rather than the MLE, ĉ =1.334, in the model (4) with

(7) for the central Japan data from the JMA earthquake

catalog. Actually this agrees with the famous empirical

formulae log10A=M+4.0 in Utsu and Seki (1955), or

equivalently log10L=0.5 M�1.8 in Utsu (1961), where

A and L represents the area and length of the aftershock

zone, respectively, for the mainshock magnitude M.

Relevantly, the above intersect constants for the land

(intraplate) events are smaller than those for the sea

(interplate) events, but the slopes 1.0 and 0.5 remain the

same according to Utsu (1969). Related studies on the

scaling relations are Shimazaki (1986), Yamanaka and

Shimazaki (1990), and Scholz (1990, Section 4.3.2).

Thus, it is also worthwhile to compare the version of

the model (4) with (10) restricted by the fixed value in

(11).

4. Application to the data sets

We use the hypocenter data compiled by the Japan

Meteorological Agency (JMA), and consider three data

sets from areas of tectonically distinctive features and

also their mixture. Initially, data of earthquakes of

magnitude (M) 4.5 and larger are chosen from the

wide region 36~428 N and 141~1458 E (Off the east

coast of Tohoku District; see Fig. 1) for all depths down

to 100 km and for the time span 1926–1995. From now

on we refer to this region as Region A. In Region A,

most of the large earthquakes took place on the plate

boundary between the North American and the sub-

ducting Pacific plates. We ignore the depth axis and

consider only two-dimensional locations (longitude and

latitude) of earthquakes, restricting ourselves to the

shallow events. Most of the events are distributed with-

in depths down to 60 km. Another area of interest is the



Fig. 1. Epicenter of earthquakes of magnitude 4.0 and larger (depth V100 km) in and around Japan, for the period 1926–1995, and regions (A), (B),

(C), and (D) from which the space–time models are applied.
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central and western part of Honshu Island, Japan, the

region 34~388 N and 131~1378 E (hereinafter referred

to as Region B) shown in the Fig. 1, where most

earthquakes are considered to be intraplate events that

occur within the Eurasian plates. Shallow earthquakes

(hV45 km) of M4.0 and larger are considered for the

time span 1926~1995. Finally, we consider the data set

of the hypocenter locations of 4586 earthquakes of

M5.0 or larger in the region 30~478 N and 128~1498
E with depths shallower than 65 km for the period from

1926 through 1995, in and around Japan, referred to in

Fig. 1 as Region C.

The maximum likelihood estimations and AIC com-

parisons are made for every data set. In calculating the

distance between the earthquake epicenters, the dis-

tance in longitude is reduced to cos(py0 /1808) times

as large as its latitude (18 corresponds to about 111.11

km), where y0 is taken to be the latitude of the center of

the area. Table 1 lists the estimated parameters and

AICs of the respective models, when the background

intensity is invariant in space such that l(x,y)=l in (4).

The AIC comparison among the considered models

shows that the goodness-of-fit of the models (4) with

(7) and (10) exhibit similar performance in both areas A

and B, but indicate better performance as regards to

(10) for Region C. However, as discussed in Ogata

(1998), the estimate p
w
b1 for a long period indicates
that the assumption l(x,y)=l in (4) is inappropriate,

which is indeed, common sense among seismologists.

More realistic versions of the three models are fitted

to each data set. Table 2 summarizes the results for the

three models with the location-dependent background

intensity (4) with l(x,y)=ml0(x,y) where the baseline

function l0(x,y) is the same as that represented by the

bi-cubic spline surfaces for the corresponding regions

in Ogata (1998). Moreover, we assume that the matrix

Sj is the 2
2 identity one for any event j, indicating

isotropic spatial clustering. Furthermore, Table 3 sum-

marizes the results for the three models with the loca-

tion-dependent background intensity and with

anisotropic spatial clustering, where the matrix Sj for

any event j is obtained by the procedure described in

the Appendix.

The goodness-of-fit of the extended model (4) with

(10) becomes significantly better than the model with

(7) for all the data sets in both Tables 2 and 3. It is

noteworthy that each AIC in Tables 2 and 3 is remark-

ably smaller than the corresponding AIC in Table 1.

However, the justification is not established for a

straightforward comparison of AIC of the models

with the adjusted function lw0 x; yð Þ beforehand, nor as
regards to additional explanatory data for the anisotrop-

ic clustering. In fact, the number of coefficients of the

B-spline function is 96, 198 and 480 for the background



Table 2

The MLEs of space–time ETAS model fitted to the three datasets 1926–1995

Model m̂ K̂ ĉ â ĉ p̂ d̂ q̂ AIC

Unit Events/day/degree2 Days Magnitude�
1

Degrees2

Off the east coast of Tohoku District (Region A) Mz4.5, 4333 events

(7) 0.131
10�3 0.416
10�4 0.230
10�1 1.605 1.605 1.043 0.103
10�2 1.857 �1037.7

(10) 0.134
10�3 0.402
10�4 0.243
10�1 1.645 1.331 1.050 0.179
10�2 1.648 �1057.6*

(11) 0.134
10�3 0.521
10�4 0.247
10�1 1.607 (1.15) 1.053 0.242
10�2 1.648 �1053.3

Central and western Honshu (Region B) Mz4.0, 3007 events

(7) 0.495
10�4 0.511
10�4 0.855
10�2 1.040 1.040 1.027 0.316
10�3 1.568 �662.1

(10) 0.953
10�4 0.524
10�4 0.878
10�2 1.103 0.802 1.028 0.416
10�3 1.580 �675.1*

(11) 0.954
10�4 0.439
10�4 0.876
10�2 1.128 (1.15) 1.027 0.269
10�3 1.564 �653.8

All Japan data (Region C) Mz5.0, 4586 events

(7) 0.131
10�4 0.475
10�4 0.176
10�1 1.518 1.518 1.021 0.232
10�2 1.738 �1426.7

(10) 0.134
10�3 0.468
10�4 0.186
10�1 1.644 1.183 1.026 0.394
10�2 1.800 �1435.0

(11) 0.134
10�3 0.492
10�4 0.186
10�1 1.637 (1.15) 1.026 0.412
10�2 1.799 �1436.7*

For each dataset the AIC-values are given relative to the value of the model (7) in Table 1. * Indicates the smallest AIC value among the models (7),

(10) and (11).
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seismicity l0(x,y) of Region A, B and C, respectively,

and the AIC differences confirm a significantly better

fit than they do with regards the homogeneous back-

ground seismicity.

The p-values which are smaller than 1.0 in Table

1 now become larger than 1.0, which agrees with our

experience in estimating the ETAS model to various

data during a long period of seismic activity. There-

fore, along with the substantial decrease of each AIC

in Tables 2 and 3 compared with the AIC of the

corresponding models, we believe that the inclusion

of the non-homogeneous background seismicity in

the space–time modeling provides significantly better
Table 3

The MLEs of space–time ETAS model fitted to the three datasets 1926–19

Model m̂ K̂ ĉ â

Unit Events/day/degree2 Days Magnit

Off the east coast of Tohoku District (Region A) Mz 4.5, 4333 events

(7) 0.131
10�
3

0.382
10�
4

0.231
10�
1

1.612

(10) 0.134
10�
3

0.375
10�
4

0.245
10�
1

1.657

(11) 0.135
10�
3

0.491
10�
4

0.248
10�
1

1.617

Central and western Honshu (Region B) Mz 4.0, 3007 events

(7) 0.946
10�
4

0.477
10�
4

0.866
10�
2

1.057

(10) 0.954
10�
4

0.489
10�
4

0.895
10�
2

1.126

(11) 0.955
10�
4

0.406
10�
4

0.890
10�
2

1.148

All Japan data (Region C) Mz 5.0, 4586 events

(7) 0.131
10�
3

0.412
10�
4

0.176
10�
1

1.549

(10) 0.135
10�
3

0.398
10�
4

0.186
10�
1

1.484

(11) 0.135
10�
3

0.428
10�
4

0.186
10�
1

1.673

For each dataset the AIC-values are given relative to the value of the model

(7), (10) and (11).
performance as regards to the present three data sets.

The location-dependent background intensity model

also provided a larger estimated value of the coeffi-

cient q of the decay power of distance to the cluster

members.

Comparing Table 2 with 3, we see that the parameter

values of the corresponding models are quite similar

and that the decrease of the AIC is not very large, in

spite of the implicitly used parameters for the aniso-

tropic clustering. Therefore, it is not very clear whether

or not the anisotropic modeling significantly improves

the goodness-of-fit, but the improvement seems to be-

come clearer as the amount of data increases, or the
95

ĉ p̂ d̂ q̂ AIC

ude�
1

Degrees2

1.612 1.043 0.102
10�
2

1.600 �1059.3

1.326 1.050 0.182
10�
2

1.662 �1081.4*

(1.15) 1.043 0.102
10�
2

1.600 �1077.6

1.057 1.027 0.316
10�
3

1.577 �678.6

0.804 1.029 0.423
10�
3

1.589 �693.8*

(1.15) 1.028 0.274
10�
3

1.575 �672.3

1.549 1.020 0.221
10�
2

1.752 �1453.6

1.196 1.026 0.396
10�
2

1.828 �1521.1

(1.15) 1.026 0.423
10�
2

1.826 �1522.5*

(7) in Table 1. * Indicates the smallest AIC value among the models ),
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threshold magnitude lowers. Finally, throughout Tables

1, 2, and 3, it is confirmed that model (4) with (10) for

the spatial clustering improves the goodness-of-fit and

its degree of significance depends on the region of

different seismicity patterns. Furthermore, reducing

the number of parameters may be possible by fixing

the parameter c in (11) depending on the data, rather

than considering the restriction a =c in the model (10),

which is nothing but the model (7).

5. Diagnostic analysis by stochastic declustering

5.1. Stochastic declustering

To obtain an objectively declustered catalogue,

Zhuang et al. (2002, 2004) proposed the stochastic

declustering method as an alternative to the conven-

tional declustering methods. In this method, it is no

longer determined whether an earthquake is a back-

ground event or is triggered by another. Instead, each

event has a probability of either being a background

event or a direct offspring triggered by another. The

main task of the stochastic declustering algorithm is to

estimate this probability for each event according to

some models used to describe earthquake clustering

features.

The technical key point of the stochastic decluste-

ring method is the thinning operation to a point process

(Ogata, 1981, 1998; Daley and Vere-Jones, 2002;

Zhuang et al., 2004). Observing the model (4), the

relative contribution of the previous i-th event to the

total conditional intensity at the occurrence time and

location of the j-th event, (tj, xj, yj), is

qi;j ¼ m tj � ti
� �

g xj � xi; yj � yi;Mi �Mc

� �
=k tj; xj; yj

� �

by the definition. That is to say, for each

i=1,2, . . .,N, select the j-th event with probability

qi,j, then we can realize a subprocess of the events

triggered by the i-th event. In this way, qi,j can be

regarded as the probability of the j-th event being

triggered by the i-th event. Furthermore, the probabil-

ity of the event j being a background event is

/j =l (tj,xj,yj) /k (tj,xj,yj) and the probability that

the j-th event is triggered is qj=1�/j=R{i: ibj}qi,j.

In other words, if we select each event j with prob-

abilities /j, we can then form up a new process, the

background subprocess, with its complement being

the clustering subprocess. For the algorithm of the

stochastic declustering, the readers are referred to

Zhuang et al. (2002, 2004).
A stochastically declustered catalogue produced

from the above procedures is not unique, since it

depends on random numbers used in the selection

of events to form the background seismicity. Unlike

conventional declustering methods, the stochastic

declustering method does not fix judgment on wheth-

er an event is an aftershock or not. Instead, it gives a

probability of how each event might look an after-

shock. Namely, the stochastic declustering is under-

stood to be a simulation, or to be precise, a bootstrap

resampling, and we understand this to be advanta-

geous because it shows the uncertainty about earth-

quake activity. Thus, simply by using random

simulation of the thinning method, we can easily

produce stochastic copies of the declustered cata-

logue. Stochastic declustering realizes (simulates)

many possible configurations of background events

depending on the seeds of random number. In this

way, we can make use of graphical statistics, based

on the repeated thinning realizations to discuss un-

certainty and significance of interesting phenomena,

in much the same way as the conventional bootstrap-

ping does.

5.2. Distribution of distance to offspring events relative

to ancestor’s magnitude

In order to examine the appropriateness of the func-

tion form exp{a(M�Mc)} /d in the model (7), Zhuang

et al. (2004) calculated the distance ri,j between a

triggered event j and its direct ancestor, event i, that

belong to a given magnitude band Mia DM, using the

set of clusters that are declustered from the coordinates

data of 8283 target events of M4.2 or larger, from the

rectangular region 130–1468 E and 33–42.58 N (see

Region D in Fig. 1), in the depth range (0, 100) km,

during the period from 10,001-th day from 1926, up

until the end of 1999. Then, to estimate the scaling

parameter d in (7) for each magnitude band DM, instead

of maximizing the log-likelihood function of the pos-

sibly quite sizeable resampled data due to the stochastic

declustering, Zhuang et al. (2004) consider maximizing

the log-pseudo-likelihood

logL Dð Þ ¼
X

i; MiaDMf g

X
j; ibjf g

qi; jlog
2 q� 1ð ÞDq�1ri; j

r2i; j þ D
� �q

8<
:

9=
;:

Fig. 2a shows the plot of D̂ against the magnitude

band DM =(M�0.05, M+0.05) for the model (7) that

is the similar to Fig. 14 in Zhuang et al. (2004). The

plots should correspond to d̂eâ(M�Mc) where d̂ and â are



Fig. 2. Circles indicate the mode of distance-distribution (i.e., D; the most frequently appeared distance from the parent to the cluster members, cf.

Section 5.2) against the corresponding magnitudes of triggering (parent) earthquakes, calculated based on the stochastically declustered clusters that

are reconstructed from the JMA data from Region D: the panels (a) and (c) show those where the stochastic-declustering algorithm is performed

using the model (7) and (10), respectively; and the panels (b) and (d) are the same plots for a simulated data using the model (7) and (10),

respectively. The solid straight lines in (a, b) and the dotted lines in (c, d) indicate the function d̂e â(M�Mc) of magnitude M, with the maximum

likelihood estimate of the corresponding model, respectively; the straight lines in (c) and (d) indicate the function d̂e ĉ(M�M c).
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the MLE of the model (4) with (7). However, the D̂ plot

alignment has a significantly biased smaller slope than

that of the log-plot of d̂eaˆ(M�Mc) as seen in Fig. 2a. On

the other hand, Fig. 2c shows a similar plot obtained by

the applying the presently proposed model (10), which

has little systematic deviation. The significance and

stability of the plots are demonstrated in Fig. 2b and

d by the corresponding simulated dataset of the respec-

tive model.

6. Concluding remarks

The detected rate of earthquakes in a catalog gene-

rally changes not only with location, but also with

time, due to the configuration of seismometers and

changing observational environments in space and

time. Therefore, we have studied the seismicity

using data from the lowest threshold magnitude,

above which earthquakes are completely detected,

satisfying Gutenberg–Richter’s law. The estimated pa-

rameter values themselves depend, by scale difference,

on the magnitude thresholds of complete detection,

except for the a, c, p and q-values, in principle.
However, the proportion of earthquakes smaller than

the minimum threshold magnitude for the complete

data is usually substantial because the number of

earthquakes increases exponentially (Gutenberg–Rich-

ter’s law) assuming all earthquakes are completely

detected. From the viewpoint of effective use of

data, this is quite wasteful in the statistical analysis

of seismic activity. Thus, our next step for the prac-

tical space–time seismicity analysis is to develop the

presently improved model, taking account of the

space–time detection rate as a function of magnitude,

time and location, as implemented in Ogata and Kat-

sura (1993) for space–time changes of b-value in the

Gutenberg–Richter magnitude–frequency law.
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Appendix A. Data processing for anisotropic

clusters

We have proposed the model (4) with (10) as the

extended version of the model (4) with (7) that was best

fitted in Ogata (1998). This model shows significantly

better fit to seismicity in a wide region. The difference

of the goodness-of-fit depends on the region of analy-

sis. Thus, we calculate the maximum likelihood esti-

mates (MLE) of the space–time ETAS model, which

show regional characteristics of seismicity such as the

background seismicity, aftershock population sizes,

aftershock productivity, aftershock decay rate, scaling

of spatial clustering, etc., throughout the considered

period.

In order to replace the epicenter coordinate (xj,yj) in

the catalog by the centroid of aftershock locations for

the coordinate (x̄j, ȳj) in the model (4), we estimate

retrospectively using the aftershock distribution as fol-

lows. First, we identify clusters of aftershocks,

i=1,2, . . .,Nj, by the algorithm that is provided

below. Then, we take the average (x̄, ȳ) of the locations

of the cluster members to replace the epicenter of the

main shock (xj, yj) only when the difference is signif-

icant as determined by the statistical procedure (Ogata,

1998).

Also, the anisotropic spatial aftershock distribution

represented by the matrix Sj in (4) for an ellipsoid is

estimated as follows. We fit a bi-variate normal distri-

bution to the location coordinates of the aftershocks in

each cluster (see below) to obtain the maximum likeli-

hood estimate of the average vector (l̂1, l̂2) and the

covariance matrix with the adimensional elements (r̂1,

r̂2) and q
ˆ
for Sj in (4) in the form

S ¼ r2
1 qr1r2

qr1r2 r2
2

� �
:

This is listed in the recompiled catalog only when

they are significantly different from the identity matrix

as the null hypothesis (i.e., r1=r2=1 and q =0). Spe-

cifically, according to Ogata (1998), the minimum AIC

procedure (Akaike, 1974), instead of the likelihood

ratio test, is adopted among all the nested models

including the null hypothesis. For the rest of events in

the cluster, the null hypothesis is always adopted;

namely, the same coordinate as the epicenter given in

the catalog and the identity matrix for Sj.

The algorithm for identifying the aftershock clusters

starts by selecting the largest shock in the original

catalog for the mainshock. If there are multiple largest

shocks with equal magnitude, the earliest one is

adopted as the main shock. Then, to form a cluster,
we set a space–time window with the bounds of dis-

tance and time depending on the magnitude of the main

shock, based on the empirical laws of aftershocks (c.f.,

Utsu, 1969). For example, the algorithm in Ogata et al.

(1995), except for foreshocks, describes its explicit

form. The identification of the aftershock cluster is

surely subjective to some degree, in spite of the method

based on the empirical laws. Nevertheless, this is useful

for our eventual objective to estimate the centroidal

coordinates and coefficients for the anisotropy of the

clusters for some large earthquakes. Indeed, we can

apply a simple similar compiling procedure based on

the aftershocks during only a few days’ period. Also,

the stochastic declustering algorithm will be useful.

References

Akaike, H., 1974. A new look at the statistical model identification.

IEEE Trans. Automat. Contr. AC-19, 716–723.

Console, R., Murru, M., 2001. A simple and testable model for

earthquake clustering. J. Geophys. Res. 106, 8699–8711.

Console, R., Murru, M., Lombardi, A.M., 2003. Refining earthquake

clustering models. J. Geophys. Res. 108, 2468. doi:10.1029/

2002JB002130.

Daley, D.J., Vere-Jones, D., 2002. An Introduction to the Theory of

Point Processes, vol. 1, second edition. Springer-Verlag, NewYork.

Dziewonski, A.M., Chou, T.A., Woodhouse, J.H., 1981. Determina-

tion of earthquake source parameters from waveform data for

studies of global and regional seismicity. J. Geophys. Res. 86,

2825–2852.

Evison, F.F., 1977. The precursory earthquake swarm. Phys. Earth

Planet. Inter. 15, 19–23.

Felzer, K.R., Becker, T.W., Abercrombie, R.E., Ekstrom, G., Rice,

J.R., 2002. Triggering of the 1999Mw7.1 Hector mine earthquake

by aftershocks of the 1992 Mw7.3 Landers earthquake. J. Geo-

phys. Res. 107, 2190. doi:10.1029/2001JB000911.

Guo, Z., Ogata, Y., 1997. Statistical relations between the parameters

of aftershocks in time, space and magnitude. J. Geophys. Res.

102, 2857–2873.

Helmstetter, A., Sornette, D., 2002. Subcritical and supercritical

regimes in epidemic models of earthquake aftershocks. J. Geo-

phys. Res. 107, 2237. doi:10.1029/2001JB001580.

Inouye, W., 1965. On the seismicity in the epicentral region and its

neighborhood before the Niigata earthquake (in Japanese). Ken-

shin-jiho (Quarterly J. Seismol.) 29, 139–144.

Kagan, Y.Y., 1991. Likelihood analysis of earthquake catalogues. J.

Geophys. Res. 106, 135–148.

Kanamori, H., 1981. The nature of seismicity patterns before large

earthquakes. In: Simpson, D., Richards, P. (Eds.), Earthquake

Prediction, Maurice Ewing Series, vol. 4. American Geophysical

Union, Washington, pp. 1–19.

Keilis-Borok, V.I., Malinovskaya, L.N., 1964. One regularity in

the occurrence of strong earthquakes. J. Geophys. Res. 70,

3019–3024.

Kisslinger, C., 1988. An experiment in earthquake prediction and the

7th May 1986 Andreanof Islands Earthquake. Bull. Seismol. Soc.

Am. 78, 218–229.

Lomnitz, C., Nava, F.A., 1983. The predictive value of seismic gaps.

Bull. Seismol. Soc. Am. 73, 1815–1824.



Y. Ogata, J. Zhuang / Tectonophysics 413 (2006) 13–23 23
Musmeci, F., Vere-Jones, D., 1992. A space–time clustering model for

historical earthquakes. Ann. Inst. Stat. Math. 44, 1–11.

Omori, F., 1894. On the aftershocks of earthquakes. J. Coll. Sci., Imp.

Univ. Tokyo 7, 111–200.

Ogata, Y., 1981. On Lewis’ simulation method for point processes.

IEEE Trans. Inf. Theory IT-27, 23–31.

Ogata, Y., 1983. Estimation of the parameters in the modified Omori

formula for aftershock frequencies by the maximum likelihood

procedure. J. Phys. Earth 31, 115–124.

Ogata, Y., 1988. Statistical models for earthquake occurrences and

residual analysis for point processes. J. Am. Stat. Assoc. 83,

9–27.

Ogata, Y., 1989. Statistical model for standard seismicity and

detection of anomalies by residual analysis. Tectonophysics

169, 159–174.

Ogata, Y., 1992. Detection of precursory seismic quiescence before

major earthquakes through a statistical model. J. Geophys. Res.

97, 19845–19871.

Ogata, Y., 1993. Space–time modelling of earthquake occurrences.

Bull. Int. Statist. Inst. 55 (Book 2), 249–250.

Ogata, Y., 1998. Space–time point-process models for earthquake

occurrences. Ann. Inst. Stat. Math. 50, 379–402.

Ogata, Y., 2001. Increased probability of large earthquakes near

aftershock regions with relative quiescence. J. Geophys. Res.

106, 8729–8744.

Ogata, Y., 2004. Space–time model for regional seismicity and de-

tection of crustal stress changes. J. Geophys. Res. 109 (B3),

B03308. doi:10.1029/2003JB002621.

Ogata, Y., Katsura, K., 1993. Analysis of temporal and spatial het-

erogeneity of magnitude frequency distribution inferred from

earthquake catalogues. Geophys. J. Int. 113, 727–738.

Ogata, Y., Shimazaki, K., 1984. Transition from aftershock to normal

activity: the 1965 Rat Islands earthquake aftershock sequence.

Bull. Seismol. Soc. Am. 74, 1757–1765.

Ogata, Y., Utsu, T., Katsura, K., 1995. Statistical features of fore-

shocks in comparison with other earthquake clusters. Geophys. J.

Int. 121, 233–254.

Ogata, Y., Jones, L.M., Toda, S., 2003a. When and where the after-

shock activity was depressed: contrasting decay patterns of the

proximate large earthquakes in southern California. J. Geophys.

Res. 108, 2318. doi:10.1029/2002JB002009.

Ogata, Y., Katsura, K., Tanemura, M., 2003b. Modelling of hetero-

geneous space–time seismic activity and its residual analysis.

Appl. Stat. 52, 499–509.

Ohtake, M., 1980. Earthquake prediction based on the seismic gap

with special reference to the 1978 Oaxaca, Mexico earthquake (in

Japanese). Report of the National Research Center for Disaster

Prevention, vol. 23, pp. 65–110.

Ohtake, M., Matumoto, T., Latham, G.V., 1977. Seismicity gap near

Oaxaca, southern Mexico as a probable precursor to a large

earthquake. Pure Appl. Geophys. 115, 375–385.

Rathbun, S.L., 1993. Modeling marked spatio-temporal point pat-

terns. Bull. Int. Statist. Inst. 55 (Book 2), 379–396.

Rathbun, S.L., 1994. Asymptotic properties of the maximum

likelihood estimator for spatio-temporal point processes. In

Special Issue on Spatial Statistic of J. Statist. Plann. Inf.,

vol. 51, pp. 55–74.
Reasenberg, P.A., Jones, L.M., 1994. Earthquake aftershocks: update.

Science 265, 1251–1252.

Schoenberg, R.P., 1997. Assessment of Multi-dimensional Point Pro-

cesses, Ph.D. Thesis, University of California, Berkeley.

Scholz, C.H., 1990. The Mechanics of Earthquakes and Faulting.

Cambridge University Press, Cambridge, UK. 439 pp.

Sekiya, H., 1976. The seismicity preceding earthquakes and its sig-

nificance in earthquake prediction (in Japanese). Zisin II (J.

Seismol. Soc. Japan) 29, 299–312.

Shimazaki, K., 1986. Small and large earthquakes: the effects of

thickness of seismogenetic layer and the free surface. In: Das,

S., Boatwright, J., Scholz, C. (Eds.), Earthquake Source Mechan-

ics, AGU Geophys. Mono., vol. 37. American Geophysical,

Washington, D.C., pp. 119–144.

Sykes, L.R., Jaume, S.C., 1990. Seismic activity on neighboring faults

as a long-term precursor to large earthquakes in the San Francisco

bay area. Nature 348, 595–599.

Utsu, T., 1957. Magnitude of earthquakes and occurrence of their

aftershocks (in Japanese). Zisin II (J. Seismol. Soc. Japan) 10,

35–45.

Utsu, T., 1961. Statistical study on the occurrence of aftershocks.

Geophys. Mag. 30, 521–605.

Utsu, T., 1968. Seismic activity in Hokkaido and its vicinity (in

Japanese). Geophys. Bull. Hokkaido Univ. 13, 99–103.

Utsu, T., 1969. Aftershocks and earthquake statistics (I): some para-

meters which characterize an aftershock sequence and their inter-

relations. J. Fac. Sci., Hokkaido Univ., Ser. VII (geophysics) 3,

129–195.

Utsu, T., 1970. Aftershocks and earthquake statistics (II): further

investigation of aftershocks and other earthquake sequences

based on a new classification of earthquake sequences. J. Fac.

Sci., Hokkaido Univ., Ser. VII (geophysics) 3, 198–266.

Utsu, T., Ogata, Y., 1997. Statistical Analysis of Seismicity

(SASeis) for Seismicity, IASPEI Software Library. International

Association of Seismology and Physics of the Earth’s Interior,

vol. 6, pp. 13–94.

Utsu, T., Seki, A., 1955. Relation between the area of aftershock

region and the energy of the main shock (in Japanese). Zisin (J.

Seismol. Soc. Japan), 2nd Ser., ii 7, 233–240.

Utsu, T., Ogata, Y., Matsu’ura, R.S., 1995. The centenary of the

Omori formula for a decay law of aftershock activity. J. Phys.

Earth 43, 1–33.

Wyss, M., Burford, R.O., 1987. Occurrence of a predicted earthquake

on the San Andreas fault. Nature 329, 323–325.

Vere-Jones, D., 1992. Statistical methods for the description and

display of earthquake catalogues. In: Walden, A., Guttorp, P.

(Eds.), Statistics in the Environmental and Earth Sciences. Edward

Arnold, London, pp. 220–236.

Yamanaka, Y., Shimazaki, K., 1990. Scaling relationship between the

number of after-shocks and the size of the main shock. J. Phys.

Earth 38, 305–324.

Zhuang, J., Ogata, Y., Vere-Jones, D., 2002. Stochastic declustering

of space–time earthquake occurrences. J. Am. Stat. Assoc. 97,

369–380.

Zhuang, J., Ogata, Y., Vere-Jones, D., 2004. Analyzing earthquake

clustering features by using stochastic reconstruction. J. Geophys.

Res. 109 (B5), B05301. doi:10.1029/2003JB002879.


	Space-time ETAS models and an improved extension
	Introduction
	Development of the ETAS model
	Epidemic type aftershock sequence model
	Space-time ETAS model

	Extension of the best fitted space-time model
	Application to the data sets
	Diagnostic analysis by stochastic declustering
	Stochastic declustering
	Distribution of distance to offspring events relative to ancestor's magnitude

	Concluding remarks
	Acknowledgements
	Data processing for anisotropic clusters
	References


