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B. Coulomb failure stress 
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  To better understand the physics behind the apparent correlation between seismicity and lake level, 

change of stress, particularly shear stress acts on pre-existing faults, due to dam impoundment must be 

estimated. On a given fault surface, ΔCFS is defined as: 
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where μ is the friction coefficient,   and e  are changes of shear stress and effective normal stress, 

respectively. Under undrained conditions (such as stress induced by a passing surface wave), the change in 

pore pressure due to a change in normal stress (where compression is positive) is given by  BP . Thus 

 )1(',' BCFS  . 

Following impoundment of a reservoir, both gravity loading and hydro pressure diffusion can lead to a 

significant change of stress on underlying and nearby faults.  

B.1 Gravity loading 

  The deformation S(x, y, z) caused by a distributed surface force F(x, y) can be expressed as a convolution 

of Green’s function G(x, y, z) and the surface force. In the case of a surface water body, Green’s function is 

the solution for Boussinesq’s problem, which refers to a point force (Fv) vertically acting on the surface of a 

homogenous elastic half-space (see Jaeger and Cook, 1979; Liu and Zoback, 1992; Lei et al., 2008 for full sets 

of equations). 

  The assumption of homogeneous elastic half-space is sufficient for the purposes of this study. An 

example of deformation induced by reservoir filling is the impoundment of Hoover dam in 1935, which caused 

crustal blocks to sag downward as much as 12 cm, as observed by direct measurements. This deformation 

agrees well with theoretical calculations using Boussinesq's method (Carder, 1970). 
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B.2. Diffusion of pore pressure from injection and dam impoundment 

  Following Biot (1962)，Rice and Cleary (1976), Bell and Nur (1978), the relationship governing pore 

pressure is given by the following diffusion equation: 
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where: 

P : Pore pressure, Pa (N*m-2, kg*m-1*s-2) 

Sa :  Unconstrained specific storage coefficient, Pa 

k : Permeability, m2 

η : Water viscosity, Pa*s=kg*m-1*s-1 

G : Rigidity or, in other words, shear modulus, Pa 

Ν :   Poisson's ratio 

νu :   Undrained Poisson's ratio 

B : Skempton's coefficient (ratio of pore pressure increment to mean stress increment 

under undrained conditions) 

Φ : Porosity, dimensionless 

βf :  Fluid compressibility, Pa-1 

βφ : Pore compressibility, Pa-1 

  For an irrotational displacement field, equation (2) is mathematically uncoupled from the mechanical 

equilibrium equations, so pore pressure perturbations propagate independently of stress changes. If K and η are 

homogeneous, equation (2) can be further simplified as: 
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  The following are other formation properties often used in the related literature: 

 D: Hydraulic diffusivity, m-2*s-1  

 K: Hydraulic conductivity, m*s-1 

 Ss: Specific storage, m-1 

 Α : Compressibility of matrix,
  , Pa-1(kg-1*m*s2) 

 Ρ : Density, kg*m-3 

These parameters are linked by the following equations: 
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The change in pressure due to a water level change in a reservoir can be obtained by the numerical solution 

of equation (2) or (3), given initial and boundary conditions that correspond to the history of the impoundment 

of the reservoir. 

 


