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A. Integrated analysis of seismicity 

Contents 
A. Integrated analysis of seismicity 1 

A.1 Event rate, energy release, and seismic b-value 1 

A.2 Nonextensive Tsallis statistics and q-value 2 

A.3 Time-domain earthquake distribution 3 

A.4 Fractal structures and characteristic scales 3 

A.5 Band-limited fractal 4 

A.6 Single-link cluster analysis and spatial correlation length 5 

A.7 ETAS modeling 5 

A.8 ETAS model with time-dependent forcing rate 6 

A.9 Extended ETAS model 8 

A.10 Nonparametric analysis 8 

A.11 Seasonality and tidal response of seismic activity 10 

A.12 Stress diffusion derived from seismic activity 10 

 

 

Statistical parameters of earthquake occurrence, including event rate (n), cumulative event number (N), 

seismic b-value in the magnitude–frequency relation, spatial correlation length (SCL), and the fractal 

dimension (D2) of the hypocenter distribution, as an integrated set, were found in a previous study to be useful 

as an indicator of the critical point behavior of rock fracture in stressed rock samples (Lei & Satoh, 2007). In 

addition, the epidemic-type aftershock sequence (ETAS) model, self-exciting model, 4D correlation model 

were also included. Follows describe statistical models often used for characterize seismic activity.  

A.1 Event rate, energy release, and seismic b-value 

Energy released by an earthquake relates the magnitude by 

iCM
iE 10      (A1-1) 

where C is a constant. The most important cases are C = 0.75 and 1.5, which yield the Benioff strain and the 

classic energy, respectively. The energy release rate can be estimated by summing (1) within a given unit time 

interval (Δt): 

tEtE i )(      (A.1-2) 
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The cumulative energy release can be simply defined by: 

 dtEE       (A.1-3) 

The cumulative event number (n) of magnitude M or greater follows the Gutenberg–Richter 

magnitude–frequency relationship (Gutenberg and Richter, 1954) given by  

bMan 10log      (A.1-4) 

In Eq. (4), both a and b are constant, and b is referred to as the b-value. 

 In general, b-value is a function of rock property (e.g density and size distribution of pre-existing 

cracks/fractures) and stress level (Lei et al., 2006; 2007). However, for a given limited area b-value may reflect 

stress evolution: decreasing b-value is potentially a good indicator of increasing stress (Scholz 1968; 

Schorlemmer et al., 2005) or diffusion of pore pressure (Lei and Satoh, 2007; Hainzl and Fischer, 2002). 

A.2 Nonextensive Tsallis statistics and q-value 

Abe S. (2002) suggested that among the Rényi, Tsallis, and normalized Tsallis entropies, only the Tsallis 

entropy is stable and can give rise to experimentally observable quantities. More recently, a very interesting 

model for earthquake dynamics related to the Tsallis nonentensive framework has been proposed by the 

Sotolongo-Costa and Posad (2004) as SCP model. Such a model consists basically of two rough profiles 

interacting via fragments filling the gap between them where the fragments are produced by local breakage of 

the local plates.  
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This is not a trivial result, and incorporates the characteristics of nonextensivity into the distribution of 

earthquakes by magnitude. The parameter a is the constant of proportionality between e and r. 

Later, the SCP model has been revisited by Slva et al. (2006) by considering a different definition for mean 

values in the context of Tsallis nonextensive statistics and introducing a scale between the earthquake energy 

and the size of fragment e~ r3 rather than e~r.  







































 3/2

210

2

1
1log

1

2
log)log(

aq

q

q

q
NN

m

m  (A.2-2) 

Vilar et al. have tested the viability of the nonextensive models for earthquakes from the best studied major 

fault zone in the world, i.e., the San Andreas fault. By using 6188 earthquake events (in the interval 2~8) taken 

from the Network Earthquake International Center catalogs and Bulletin of the International Seismological 

Centre they have shown, in agreement with other similar analyzes, that for values of the nonextensive 

parameter of the order of q = 1.6–1.7. 
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A.3 Time-domain earthquake distribution 

Will be included in later version. 

 

A.4 Fractal structures and characteristic scales 

The spatial distribution of many geological systems such as earthquake hypocenters and active faults show 

complexity at all scales. Self-similarity and fractal distribution are concepts for describing such complexities. 

For spatially distributed points such as earthquake hypocenters, correlation integral C (r) defined by following 

equation is used to examine the self-similarity of the distribution :  
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Where, Nr(R < r) is the number of pars of points having a distance R less than r. If the distribution is fractal 

C (r) would be a power of , 2)( DrrC  ,，and D2 is the so-called fractal dimension. In other words, the N(r)-r 

relation in a double logarithm coordinate will be a line statistically, and the slope of the line gives a capacity 

fractal dimension. 

The box-counting method (BCM) is also often used to evaluate the similar structure of a system. The BCM 

is particularly useful for such as trace of active faults. Figure 3-5 is a conceptual diagram for the box counting 

method applied to points and lines. By changing the size (r) of a square box and counting the minimum 

number N(r) of boxes necessary to cover all the data, the relation of N(r) to r is obtained.  

More generally,  

 

Figure A4-1. A conceptual plot showing a box-counting method applied to line extended object (a)  
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and point distributed data (b). By changing the size (r) of the square box and counting  

the minimum number N(r) (Lei & Kusunose, 1999) 

 

A.5 Band-limited fractal 

Ouillon et al. [1995, 1996] applied a multifractal analysis to joints and faults from 1 cm to 100 km scales, 

and pointed out that different geometries and scaling laws hold for different scale ranges, separated by 

boundaries that correlate well with the thickness of lithological units that constitute the continental crust. Lei et 

al. (1993), proposed that the distribution of the earthquake epicenters in and around China, range from several 

km to several thousand km, is not a strict fractal. There are two characteristic scales, which divided the whole 

scale range into three bands. Strictly speaking, the distribution of earthquake epicenters is not a fractal. But, 

since within each band a power law distribution is established quite well, it was therefore referenced as a 

“band-limited” fractal. Band-limited fractal, which is a special case of non homogeneous fractal (multifractal), 

is used to emphasize the existence of characteristic scales that are band boundaries. In each band, the measure 

may be non homogeneous or homogeneous. For instance, in a large scale, earthquakes are concentrated on the 

boundary of plates and in seismic zones, having a fractal dimension approximately equal to 1.0. On the other 

hand, in a scale from tens to hundreds km, we would see many clusters (or in other words, swarms) distributed 

along active fault zones, with a fractal dimension less than 1.0. When an individual cluster is magnified, the 

epicenters are observed to be distributed in a fault zone with a higher fractal dimension. 

 

Figure A5-1. Generalized-correlation-integral functions of the epicenter distribution of earthquakes in China versus 
distance in double logarithm coordinates. The data shows band-limited multifractal structure with three bands. 
The fractal dimension for each band and for q = 2 to 15 are measured by the least-square fitting and also 
specified in the right side.(Lei et al., 1993) 
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A.6 Single-link cluster analysis and spatial correlation length 

The concept of critical earthquake has been proposed to model earthquake process as a critical phenomenon, 

where the largest or catastrophic earthquake is considered as analogous to a critical phenomenon happening at 

a second-order phase transition in analogy to percolation phenomenon (Yamashita & Knopoff, 1989; Sornette 

A. & Sornette D., 1990). Under such a consideration, if the system (spatially distributed earthquakes) 

approaches a critical point, the spatial correlation length (hereafter abbreviated as SCL) is expected to grow 

according to a power law (Bruce & Wallace, 1989): 

      (A.6-1) 

where k is a positive constant.  

 The SCL of a set of N consecutive events can be estimated using single-link cluster analysis (Frohlich and 

Davis, 1990). Initially, each individual hypocenter is linked with its nearest neighbor hypocenter to form a set 

of clusters. Then, every cluster is linked with its nearest cluster. This process is repeated until N events are 

connected with N-1 links. Following previous work (Zöller et al., 2001; Tyupkin and Giovambattista, 2005), 

the SCL is here defined as the median of the distance distribution of the N-1 links. Where, the distance 

between any two clusters is calculated based on their geometric centers.  

A.7 ETAS modeling 

It is known that smaller changes in shear stress in a fault system, transferred from (seismic or aseismic) fault 

slip elsewhere or any other kind of loading, can lead to changes in seismicity (Reasenberg & Simpson, 1992; 

Stein, 1999; Toda et al., 2002). In some sensitive cases stress change in the order of 0.1 bar can cause change 

in seismic activity (King et al., 1994, Cochran et al., 2004). Because the triggering process for a given 

earthquake sequence is complex and because it is difficult to precisely describe the transfer of stress in a fault 

system of fractal complexity, statistical approaches such as the epidemic-type aftershock sequence (ETAS) 

model, which incorporates the Omori law by assuming that each earthquake has a magnitude-dependent ability 

to trigger its own Omori-law-type aftershocks, have received significant attention (Ogata et al., 2003; Ogata, 

2005; Sornette & Sornette, 1999; Helmstetter & Sornette, 2003). The ETAS model is an appropriate tool for 

testing the significance of changes in seismic patterns, such as the relative quiescence that occurs prior to a 

large earthquake or large aftershock (Ogata, 1992, 2001). The ETAS model is also helpful in detecting minor 

stress changes (Helmstetter & Sornette, 2003) and extracting a fluid signal from seismicity data (Hainzl & 

Ogata, 2005; Lei at al., 2008). 

 We provide a summary of this model below; a more detailed account can be found in the cited references. 

The ETAS model incorporates the Omori law by assuming that each earthquake has a magnitude-dependent 

ability to trigger its own Omori-law-type aftershocks (Ogata, 1992; Helmstetter & Sornette, 2003). The total 

k
f ttt  )()(
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occurrence rate is described as the sum of the rate of all preceding earthquakes and a constant rate p0 that 

represents the stable Poisson process; in other words, random background activity: 
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where Mmin is the low-end magnitude cut-off of the catalog and α is a constant that specifies the degree of 

magnitude dependence. We also tested the Poisson model ( 0)( pt  ) and a self-exciting model that employs 

an exponential decay function instead of the Omori law (Lei et al., 2000).  
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Model parameters in Eq. A7-1 and A7-2 were estimated by minimizing the Akaike information criterion 

(AIC). As a result, ETAS models provide the smallest value of AIC of all the models, indicating that ETAS 

models provide the best fit to the seismic data. The parameter (p0, K0, c, α, p) is assumed to take the same 

values for all events, thus representing regional characteristics of seismicity. Typical values of ETAS 

parameters obtained for various earthquake data sets are p =[0.9, 1.4], c =[0.03, 0.3 day], α=[0.2, 3.0] (Guo & 

Ogata, 1997). 

The parameter is useful in characterizing earthquake sequences qualitatively in relation to the classification 

into seismic types(Ogata, 1992). For example, earthquake swarms have α values less than 1, and clear and 

simple mainshock-aftershock activity in Japan has α>2. 

As for the ETAS model, the likelihood function is  
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The log-likelihood function is 
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The parameter is useful in characterizing earthquake sequences qualitatively in relation to the classification 

into seismic types (Ogata, 1992). For example, earthquake swarms have α values less than 1, and clear and 

simple mainshock-aftershock activity in Japan has α>2. 

 

A.8 ETAS model with time-dependent forcing rate 
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In some cases such as injection-induced seismicity the forcing rate is strongly dependent on injection factors 

and thus could not be treated as constant (Lei et al., 2013). Otherwise incorrect ETAS parameters (superior low 
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value of α) could be estimated (Marson et al. 2013). For such cases it is required to assume that the forcing rate 

μ can vary with time, while the parameters A, α, p, and c are constant. Marson proposed a practically useful 

method for the estimation of the forcing rate which consists of: 

1. Initially assuming a constant forcing rate 00 )(  t , using the Gamma distribution of waiting times 

between consecutive earthquakes. 
 /1)(  eCf  (A.8-2) 

Here, τ is the normalized interevent time that is obtained by multiplying the interevent time t with the 

earthquake rate λ. Based on the assumption that the seismicity consists of a Poissonian background activity and 

triggered aftershocks following the Omori law, Molchan (2005) showed that the value 1/β is the fraction of 

mainshocks among all seismic events, in other words, the forcing rate. 

2. Computing the MLE ETAS parameters θ(K, α, c, p) knowing λ0(t). 

3. Updating the estimate of the forcing rate based on these parameters. This step first requires the computation 

of the probability ωi that the ith earthquake is a background earthquake, for all i. This probability is defined as 

[Zhuang, 2002] 
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The forcing rate is then obtained by smoothing these probabilities over time: 
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where a and b are the indices of the sequence number earthquakes which define a window of ne earthquakes 

centered on t. 

The appropriate smoothing parameter ne can be determined by minimizing following Akaike Information 

Criterion (AIC): 

)12/(2)()(  ee nNETASAICnAIC  (A.8-5) 

where N is the number of earthquakes in the data set. 

It is convenient to plot the theoretical/observed cumulative number of events as a function of the 

transformed time, i.e., the integral of the occurrence rate over the time interval (S, T). The time series on the 

transformed time axis is thus a Poisson process, which provides a visual confirmation of goodness of fit and 

allows examination of change points. 
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A.9 Extended ETAS model 

Consider a space-time occurrence rate lq(t, x, y) at the time and location (t, x, y) as an extension of the 

ETAS model. Having compared the three typical space-time extensions of the ETAS model, Ogata [1998] 

eventually recommends the following model expressed by 
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where Sj is a dimensional 2x2 positive definite symmetric matrix, and (. , .)^ indicates transpose of the vector. 

The square brackets have the dimension of degree2 where ‘‘degree’’ corresponds to the global distance in 

latitude. The quadratic form within the brackets indicates that the aftershocks are spatially distributed with 

ellipsoidal contours. 

A.10 Nonparametric analysis 

As a point process in time, space, and magnitude, the observed (dressed) seismicity rate density λ(x, t), 

defined as the number of earthquakes per unit time and unit volume at position x and time t, is modeled as 
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where λ0 is the uniform background rate density, and λi(x, t) is the (bare) contribution of earthquake i that 

occurred at {xi, ti}, representing the aftershocks directly caused by this earthquake. By assuming only that (i) 

the triggering process is linear [i.e., the bare contributions λi(x, t) sum up], and (ii) a mean-field response to the 

occurrence of an earthquake can be estimated that depends only on its magnitude, λi(x, t) = λ(|x – xi|, t – ti, mi), 

Marsan and Lengline (2008) proposed an algorithm for estimating the bare kernel: 

1. Knowing an a priori bare kernel λ(r, t, m) and λ0, the triggering weights are calculates by 
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2. The updated bare rates are then computed as  
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where A is the set of pairs such that |xi – xj| = | x| ± δr, mi = m ± δm, and tj – ti = t ± δt (δr, δt, and δm are 

discretization parameters), Nm is the number of earthquakes such that mi = m ± δm, and S(| x|, δr) is the 

surface covered by the disk with radii | x| ± δr. The a posteriori background rate is 
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where T is the duration of the time series (containing N earthquakes) and V is the space volume (3D) or 

surface area (2D) analyzed. This corresponds to stacking all the aftershocks following mainshocks i of similar 

magnitudes, but counting an aftershock j according to its weight wi,j.  

These two steps are repeated until convergence is reached. The convergence is equivalent to maximizing the 

logarithm likelihood of the model: 

The log-likelihood function is 

 

 

 



















N

i

N

i

tT

iit

i

j
iijij

N

i

T

i

i

dtMttVTMttrr

dtttLL

1 1
00

1

1
0

1
0

),(),),(|ln

)()(ln





 (A.10-5) 

 

It is helpful to decouple the spatial and the temporal dependence of the kernel into spatial density λs (number 

of triggered earthquakes per unit volume) and temporal rate λt (number of triggered earthquakes per unit time):  

),(),(),,( itisii mtmrmtr    (A.10-6) 

By constraining the spatial density to be normalized: 
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where A=2πr (2D) or 4πr2 (3D), the temporal rate λt is obtained from: 
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The kernel 

The a posteriori background temporal rate is given by: 
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The background temporal rate is given by: 
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Marsan D. and O. Lengline (2008), Extending earthquakes' reach through cascading, Science, 319, 1076-1079, 

DOI: 10.1126/science.1148783. 
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A.11 Seasonality and tidal response of seismic activity 

Utilities associated with seasonality and tidal response of seismic activity is now going for thorough 

examination.  

A.12 Stress diffusion derived from seismic activity 

Following Marsan & Bean (1999) a 4D correlation approach was used for analyzing stress diffusion derived 

from seismic activity. For a space time distributed points set (xi, ti) of N events and cover a period of duration 

T, we firstly calculate the average rate of events N(r, t) occurring in a space-time window of size (LW, TW) at a 

distance r and time delay t after any event: 

N r t
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where )( p  is 1/0 if p  is true/false, and c is a artificial factor. For convenience we call any event i as 

“main” event and all events j of tj < ti as it's “after events”. 

 N(r, t) will change with t if the data includes temporally correlated events. N(r, t) will change distance r 

and reflects the spatial structure of the series. For a spatially random series, N(r, t) is proportional with rD-1 

where D is the spatial dimension. We consider the case that the time-space point series includes both random 

and correlated events. Since correlation distance in time is limited, N(r, t) is expected be convergence with t. 

To remove the temporally uncorrelated events from N(r, t), we define a new function C(r, t) as 

),(),(),( maxttrNtrNtrC   (A.12-2) 

Where, tmax must be selected carefully to be great than the correlation distance in time. In addition, tmax must 

be <<T to avoid edge effects. Since the series has not only limited duration but also limited space, a rmax is 

need to be introduced to avoid the effect of spatial edge. Now C(r, t) gives the probability of after events 

triggered by the main event after a delay t, at a distance r away from this main event. The mean distance of 

C(r,t) at time given by 
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can be used to derive stress diffusivity. 

 


