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This is a study of the formulation, some basic solutions, and applications of the Biot linearized quasi- 
static elasticity theory of fluid-infiltrated porous materials. Whereas most previously solved problems are 
based on idealizing the fluid and solid constituents as separately incompressible, full account is taken here 
of constituent compressibility. Previous studies are reviewed and the Biot constitutive equations relating 
strain and fluid mass content to stress and pore pressure are recast in terms of new matorial parameters, 
more directly open to physical interpretation as the Poisson ratio and induced pore pressure coefficient in 
undrained deformation. Different formulations of the coupled deformation/diffusion field equations and 
their analogues in coupled thermoelasticity are discussed, and a new formulation with stress and pore 
pressure as basic variables is presented that leads, for plane problems, to a convenient complex variable 
representation of solutions. The problems solved include those of the suddenly introduced edge disloca- 
tion and concentrated line force and of the suddenly pressurized cylindrical and spherical cavity. The 
dislocation solution is employed to represent that for quasi-static motions along a shear fault, and a 
discussion is given, based on fracture mechanics models for fault propagation, of phenomena involving 
coupled behavior between the rupturing solid and its pore fluid, which could serve to stabilize a fault 
against rapid spreading. Also, the solution for a pressurized cylindrical cavity leads to a time-dependent 
stress field near the cavity wall, and its relevance to time effects in the inception of hydraulic fractures 
from boreholes, or from drilled holes in laboratory specimens, is discussed. Various limiting cases are 
identified, and numerical values of the controlling porous media elastic parameters are given for several 
rocks. 

INTRODUCTION 

The stress-induced flow of interstitial fluid in porous solids 
has been suggested as accounting for a variety of phenomena 
observed in geophysical studies and engineering practice. In 
the years since Terzaghi [1923, 1936] proposed his 'effective 
stress' theory to rationalize observations of time-dependent 
consolidation and failure in soil masses, some significant prog- 
ress has been made in developing reasonable constitutive and 
field equations for porous media [e.g., Biot, 1941, 1973; $•klje, 
1969; Nikolaevskii et al., 1970] and in applying these to explain 
observed behavior in geological materials. 

Indeed, the linear formulation of Biot for stress diffusion 
fields is precisely analogous [Biot, 1956b] to the well-estab- 
lished theory of linear coupled thermoelasticity [e.g., Carlson, 
1972], so an abundance of available solutions might be ex- 
pected. Unfortunately, the neglect of coupling terms that is so 
commonly and justifiobly used to simplify the equations in 
thermoelasticity [e.g, Boley and Weiner, 1960; Botey, 1974] is 
certainly not approprhte for fluid-infiltrated solids. Thus the 
majority of. thermal stress solutions fail to apply to the seem- 
ingly analogous porous media problems. Except for some 
simple cases [e.g., Boley and Tolins, 1962] and some other very 
general fundamental solutions [e.g., Nowacki, 1964], in which 
coupling is rigorously retained in the equation governing the 
temperature distribution, resort must usually be had to one of 
a small number of formal procedures [e.g., Biot, 1956a, b; 
McNamee and Gibson, 1960] in order to solve the equations 
governing the response to stress of porous solids. Thus very 
few worked solutions of significant problems are actually 
available, perhaps in part because the algebraic details become 
rather complicated when work is done with those existing 

formalisms. One example is the recent paper by Booker [1974], 
which uses the formulation of McNamee and Gibson [1960] to 
obtain some features of the stress field due to a dipole pair of 
straight edge dislocations representing slip in an infinite body 
of porous material with incompressible constituents. 

We show here, however, that the governing equations are 
not significantly more complicated when arbitrary compres- 
sibilities are assigned to the fluid and solid constituents. In 
fact, then, the same formulation could have been used to 
obtain the more general dislocation solution with such full 
compressibility. But we also develop and utilize here a com- 
plex potential representation for plane problems, which we 
have found simpler than that of McNamee and Gibson [1960]; 
effectively this is an extension of the Muskhelishvili [1953] 
formalism, in classical elasticity, to stress diffusion problems. 
It allows us to easily solve the dislocation and other basic 
problems, which have direct application to shear faulting, 
hydraulic fracturing, mining, and other types of disturbance in 
porous media. 

Before doing that, we set out, using readily identifiable 
parameters, isotropic constitutive equations like those of Biot 
and Willis [1957]. We also summarize the governing three- 
dimensional equations in their simplest form in order to clarify 
their exact structure and their thermoelastic counterparts. We 
wish further to emphasize that our presentation of the equa- 
tions with stress components and pore pressure as basic varia- 
bles may frequently prove advantageous to the Navier (dis- 
placement type) formulation given by Biot [1956a]. 

LINEARIZED CONSTITUTIVE RELATIONS FOR A 
FLUID-SATuRATED POROUS ELASTIC SOLID 

•Now at Department of Mechanical Engineering, Massachusetts 
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The framework for a general theory of mixtures of inter- 
acting continua [Truesdell and Toupin, 1960; Bowen, 1971] has 
provided a popular approach to recent studies of the rheology 
of porous solids [e.g., Tabaddor and Little, 1971; Garg, 1971; 
Morland, 1972]. But there is no improvement to be had on the 
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classical Biot [1941, 1955, 1956a, 1973] formulation in the 
present circumstances of quasi-static elastic deformation, cer- 
tainly under conditions for which local equilibrium of the 
pore fluid can be assumed. It must be emphasized that Biot's 
formalism does not prohibit the continuum viewpoint nor 
imply images of an array of grains, as frequently used to derive 
elastic properties of the solid matrix, or even of a solid skele- 
ton so constructed as to give a partial fluid stress proportional 
to porosity [e.g., Blot, 1956a; Nikolaevskii et al., 1970]. The 
appropriate decomposition into effective stresses on the solid 
matrix and pressure on the fluid can be allowed to occur 
naturally without postulating how they make up the total 
stress on a material element. 

The simplest rigorous approach is to define total stresses a•j 
and pore pressure p as basic state variables and assume that 
these are related in some appropriate fashion to the strains of 
the solid (components co, derivable from a solid displacement 
vector) and the mass m of pore fluid per unit reference volume. 
(Here i, j = 1, 2, 3; also, the summation convention applies 
when repeated indices are used subsequently.) The pore pres- 
sure p is most fundamentally defined as the equilibrium pres- 
sure that must be exerted on a homogeneous reservoir of pore 
fluid, brought into contact with a material element, so as to 
prevent any fluid exchange between it and the element. It is 
most convenient, in fact, to represent the fluid mass content of 
an element in terms of the apparent fluid volume fraction v, 
where 0v = m and 0 is the fluid density in the imagined fluid 
reservoir at pressure equilibrium with the element. 

The linear and isotropic expression for eo necessarily has the 
form [Biot, 1941] for isothermal conditions, 

p 

2G•ii = (trii + pSii) -- (1 + v) (•rkk + 3p)Sg• 

where G and v are the shear modulus and Poisson ratio when 

the material is deformed under 'drained' conditions (i.e., p 
constant) and the 'drained bulk modulus' is K = 2G(1 + 
v)/3(l - 2v). The constant H is that of Biot, but we have 
regrouped his equation in order to isolate a new material 
constant K,', given by 1/K - 1/H =- 1/K,', which can in 
appropriate circumstances be identified as the bulk modulus 
K, of the solid phase [e.g., Nur and Byerice, 197 l, and discus- 
sion to follow]. The arguments used by Blot [1941, 1973], 
involving the fact that aod•v + pdv, and thence •odao + vdp, is 
an exact differential, may be applied to deduce, from (1), the 
relation for apparent volume fraction 

1 t•0 
v - v0 = • (•r,•k + 3p) - --7• p (2) Ks 

where v0 is its reference value in the unstressed state. Here the 
grouping of terms is chosen to facilitate recognition of the 
modulus Ks", which can also often be identified [e.g., Cornet 
and Fairhurst, 1974] with Ks. Blot [1941] simply employed a 
constant R, related to our Ks" by 1/R -- 1/H - vo/Ks"; 

That this is so is recognized by considering an interior uniform 
pore pressure change Ap and simultaneous change A a o = 
--Ap6 o of total stresses on the faces of an element. The obser- 
vation of Nur and Byerice [1971] is precisely that these macro- 
scopic changes in variables produce a local stress alteration of 
-Ap6 o at each point of the solid phase: every linear dimension 
of the solid phase is thus reduced by a fraction Ap/3Ks, and 
thus the unique defor•'rhation pattern is a fractional reduction 
Ap/Ks in every volume (including the volume of fluid-filled 
interstices). This observation may be stated as 

Ae o = -6oAp/3Ks Av = -voAp/Ks 

which can be compared with (1) and (2) to yield Ks' = Ks" = 
Ks. 

More generally, however, K ' K" s and s must be regarded as 
experimental constants additional to G and v and analogous to 
H and R. Conceptual and realistic appropriate tests are also 
described by Blot and Willis [1957]. Typically, Ks' and Ks" will 
have the same order of magnitude as a representative bulk 
modulus for the 'non-fluid-infiltrated' (as opposed to 'solid') 
phase [e.g., Cornet and Fairhurst, 1974]. 

Undrained elastic behavior. The mass rn = ov of pore fluid 
per unit volume of material may be expressed from (2) in a 
!inearized expansion to give 

V0 

rn -- mo = (p -- po)Vo -+- po(V -- Vo) = Oo •.-• P 

+ ¾ - 7C + 3.)- (3) 
where m0 and 00 obtain in the reference state and the bulk 
modulus of the fluid is Kr = OoP/(O - Oo). 

By 'undrained deformation' we mean the imposition of 
stress alterations Atrti over a time scale that is too short to 
allow the loss or gain of pore fluid in an element by diffusive 
transport to or from neighboring elements, i.e., Am = 0. Still, 
it is assumed for our present considerations that the time scale 
is long enough that local pressure equilibrium is attained 
within the various communicating pores constituting a 'point' 
in the continuum model of the material. This kind of local 

equilibrium cannot always be attained, and our present mean- 
ing of 'undrained conditions' may be contrasted with that for 
an even shorter time scale, as in the work of O'Connell and 
Budiansky [1974]. Indeed, they determine approximately over- 
all elastic moduli for saturated rock under conditions for 

which there is no fluid loss or gain to any individual pore and 
hence no degree of pressure equilibrium between neighboring 
pores, no matter how close. The O'Connell-Budiansky short- 
time undrained moduli should govern the response to truly 
instantaneous impositions of stress, but these moduli can usu- 
ally be expected to relax to the undrained moduli of the Biot 
theory, as based on the assumption of local pressure equilib- 
rium, over a time that is quite short by comparison with that 
needed for induced D'Arcy flows to achieve global pressure 
equilibrium over the entire deformed region. Thus while there 

physical significance was later attached to H and R by Blot and . is indeed the need of a theory that is broad enough to contend 
Willis [ 1957]. 

Interpretation of Ks', Ks". In the special case where all void 
space of any elemental volume is continuous and allows free 
fluid filtration, for which all points of the solid phase may be 
taken as elastically isotropic with the same local bulk modulus 
Ks, and where both fluid and solid are chemically inert, the 
moduli Ks' and Ks" are indeed sensibly associated with 

with cases of local pressure nonequilibrium, we shall here 
understand 'undrained deformation' and 'instantaneous re- 

sponse' in the context of local equilibrium only. 
Our undrained response may be written as Am = 0, and (3) 

then gives a relation like that of Skempton [1954] between 
initial induced pore pressure and total hydrostatic stress on an 
element 
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Ap = --B • 

m .__ 

hO'kk 

1/K- 1/Ks' 
vo/Kf q- 1/K- l/K,'--YolK," 

(4) 

As noted by Skempton, B would typically be unity for water- 
saturated soils (Ks"/Vo > Ks' > Kr >> K) but can be sub- 
stantially less for rocks, constituents of which are not effec- 
tively incompressible. 

An expression for the 'undrained Poisson ratio' v,, may be 
obtained by substituting from (4), for Ap, into (1) and com- 
paring resulting coefficients with the definition of in- 
stantaneous elastic response 

2GAeii • Ao'ii- Ao'•Sii (5) 
l+v,• 

The conclusion is that 

3v + B(1 -- 2v)(1 -- K/K,') 
v,, = 3 -- B(1 -- 2v)(1 -- K/K,') (6) 

The practical range of v•, is obviously « > v•, > v; the upper 
limit is reached for separately incompressible constituents (B 
= 1, K/Kd = 0), and the lower bound is achieved when pore 
fluid is highly compressible, Kr << voK (then B -• 0). 

Subsequently, we shall use B and v,, instead of Kd, Ks" (or H 
and R of Biot), and vo/Kr, since these are open to such simple 
physical interpretations. Indeed, we may either calculate B and 
v,, in terms of the other parameters or simply take them 
directly from the result of a single undrained test in which the 
Poisson effect and induced pore pressure are measured. In 
terms of them, (1) and (3) can be shown to take the forms 

v 3(v•, -- v) 
..... •r•i + 2Geii o'ii 1 q- v B(1 -+- v)(1 q- v,,) P•Jii (7) 

3oo(v,, -- v) 

m -- mo = 2GB(1 + v)(l + v,,) [,r** +-•,] (8) 
which contain only four elastic constants: G, v, B, and v•,. This 
form is sensible in light of the complete similarity of the 
porous medium constitutive equations (7) and (8) to those for 
a linear isotropic thermoelastic solid [e.g., Boley and Weiner, 
1960]. The correspondence is recognized simply by identifying 
pore pressure p with a multiple of temperature fluctuation and 
fluid mass rn with some multiple of specific entropy per unit 
reference volume [Blot, 1956b]. Thus, the analogue of our 
undrained response is the isentropic deformation of a 
thermoelastic solid while ongoing dissipation of pore pressures 
matches its approach to isothermal equilibrium conditions. 

The analogy with linear thermoelasticity is completed by the 
constitutive law governing pore fluid diffusion, namely that of 
D'Arcy, given here for the isotropic case 

q• = -poK ap/c•xt (9) 

relating the fluid mass flow rate in the xt direction, qt per unit 
area, to gradient of pore pressure. Equation (9) is written for 
the absence of' dynamic or other perturbations in the form of a 
body force field (then pft would be subtracted from c•p/c•xt, 
where ft is the force per unit mass of fluid). The permeability t• 
is usually given as units of area k,"where t• -- k/# and # is fluid 
viscosity. The corresponding thermoelastic law is Fourier's 
linear proportionality between the temperature gradient and 
heat flux. 

FIELD EQUATIONS 

Since our present concern is with quasi-static phenomena, it 
is adequate and convenient to express the governing equations 
in terms of a o and p. The former must obey equilibrium 
conditions (neglecting body forces) 

6•O'tj/ 6•Xj --' 0 O'tj -- O'jt (10) 

But they must also be related, through (7), to infinitesimal 
solid strains co, which must, in turn, be derivable from a solid 
displacement vector. The appropriate compatibility conditions 
on eo are well-known in elasticity [e.g., Love, 1927, article !7] 
and, by using (7) and (10), they reduce to six mutually inde- 
pendent equations in a• and p, most conveniently chosen as 

+ B(1 + •,) [V=PS'• + 0 p/Ox, Ox•] = 0 (11) 
where the notation used hereafter is V=( ) • a=( )/axeaxe. 
As a specia} feature of these equations, we note that con- 
traction on i,j gives a very useful relation between a• and p, 

•,[ 6(v. -- v) v** + B(1 -- v)(1 +v,) p = 0 (12) 
This procedure is almost completely parallel to that fol- 

lowed in arriving at the Beltrami-Michell formulation in classi- 
cal elasticity (i.e., stresses rather than displacements taken as 
basic variables) with body forces proportional to the gradient 
of p. But a distinction does arise from the entrance of p 
through the constitutive rather than equilibrium equations. 
Equations (l l) and the conventional elasticity equations be- 
come formally identical w•en we use (ao), the 'effective stress' 
of Nut and Byedee [1971], to rewrite (1) as 

2Geii = (Vii) 1 + v 
(13a) 

½,,) + - K/K.')vO,, 

because p then actually enters (formally) through the equilib- 
rium equations 

a(m•)/axs - (1 - K/K,') ap/ax• = 0 (13b) 

The Beltrami-Michell equations (equations (11)) thereby take 
the form 

+ + Ox, - - K/K,') 

ß 20•/Ox• Ox• + 1 -- v 
As usual, there is no overdeterminacy involved in (10) and 

(l l ). The only essential distinction from a conventional elastic- 
ity body force problem, when the question of analytic or 
numerical solution techniques arises for instance, is that the 
'body force' field is now coupled to the stresses in general. 
Indeed, this coupling is accomplished through the final gov- 
erning equation, that of mass conservation for the infiltrating 
pore fluid, 

gq•/gx• + gm/gt = 0 (14) 

This is transformed to the variables a• and p, by (8) and (9), to 
get 

3(v• -- v) 0( 3 ) = 2oe( + + + (lS) 
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We can combine this with (12) in an obvious fashion to write 

3p) 0 (o.• • + 3p) (16) = 
where c is the 'coefficient of consolidation' or 'diffusivity,' 
given by 

The classical consolidation coefficient, as frequently used in 
soil mechanics [e.g., Sfiklje, 1969, section 14.1], may be found 
by specializing to incompressible constituents, and then the 
last bracket gives unity. The first bracket gives the drained 
elastic modulus for one-dimensional deformation (e.g., in the 
oedometer test). Lastly, the various diffusion equations found 
by Blot [1941, 1955, 1956a] are given here in the most general 
common form, since (8) and (16) show that the fluid mass 
content m per unit volume satisfies a homogeneous diffusion 
equation 

cV"m = am/at (18) 

In summary, the governing equations are as follows: (i) the 
equilibrium equations (10), (ii) three of the compatibility 
equations (l l) and (12), and (iii) the diffusion equation (16). 
But if, instead, we followed the Blot procedure of taking 
displacements and pressure as variables, the governing equa- 
tions would be (10) and (16), with atj expressed in terms of 
displacement gradients, au•/axt, and p. 

EQUATIONS GOVERNING PLANE DEFORMATION 

The kinematic constraint of 'plane strain' say only in the 
XlX•. plane, is eat = 0. Thus (7) requires 

3(v• -- v) 
traa = /2(O'11 + 0'22) -- B(1 q- v,,) p o'a• = o'a2 = 0 (19) 
Now the constitutive laws ((7) and (8)) may be written be- 
tween the lesser number of variables, •, •,., •., m and a•, 
0'12 , p: 

2Ge,• o = o',• o -- /2(0'11 + 0'22)•c•/$ + 

where 

3(/2,, -- /2) 
B(1 + 

p 6,,,• (20a) 

3 po(V•, -- v) 

m- mo= 2GB(1 -{--v•,) M (20b) 

(20b) M -= (a• + a•.•.) + [3p/B(1 + v,)] 

Greek indices have range 1, 2. The variable M has dimensions 
of stress but is proportional to change in fluid mass content 
and thus automatically satisfies cV•'M = aM/St. Equation 
(20a) may be rewritten in terms of M, 

2Ge.• = tr.• - /2.(0'11 ql_ 0-29.)(•t•/• ql_ (/2. __ v)Mb,• (21) 

The equations governing the four chosen independent varia- 
bles a•, a•.•., a,., and p (or sometimes M, where convenient in 
the following) may be enumerated as before: we simply use 
(19) in (10), (12), and (16) to get 

(22a) 80'12/aX 1 '-• 80'22/aX 2 -- 0 

(22b) (ii) V"[cr• + a•.•. + 2r/p] = 0 

where 

. -- 3(v. - v)/[2B(1 + v.)(1 - v)] (22b) 

(iii) cV 2 o-,• + 0-22 + B(1 + /2•,) p 

The compatibility eouation (22b) suggests that we introduce 
the complex variable z = x• + ix=, i = (-ly/=, and represent 
the solution in terms of a function •(z, t), analytic in z, named 
in analogy with the first Goursat function of the Muskhelishvili 
[1953] formalism. Thus we define 

4 Re [•(z, t)] • (a,, + •22) + 2•p 

_ 1 -- v• (a,, + a22) + v,• --f M (23) 
1 --v 1 --v 

Re means 'real part oh' and, as the notation implies, the 
function will be time-dependent in general. 

Equation (22c) may now be recast in the form 

Op2(v,,--v) cW•P = •[ • n(1 -- v•)Re •[ (24) 
which shows that pore pressure is governed by a homogeneous 
diffusion equation only in the special cases where ß is time- 
independent. Such cases will have central attention in this 
paper because it is obvious that the solution technique is then, 
at least formally, very straightforward: (l)• is deduced from 
either the initial undrained or final drained elasticity solutions, 
(2) p is determined by solving a simple diffusion equation 
subject to appropriate boundary and initial conditions on 
some region. To deduce the remaining stresses, we must find a 
second stress function, called •(z, t) in the complex variable 
formulation to be given next. Although this function may be 
hard to extract for many complex problems, it emerges simply 
for the problems considered later. 

In reference to case 1 above, we may identify the nature of 
ß (z, t) at t = 0 and t = m. Immediately after (t = 0 +) a sudden 
(but quasi-static) disturbance the classical elasticity solution 
applies based on the 'undrained' elastic constants O and v•. 
Since no fluid transfer can have occurred ihen, M0+ = 0, and 
(20b) gives 

Po+ = - + (25) 
3 

In general, we will be discussing problems where pore pres- 
sures dissipate to zero after long times (t = m), so (23) has the 
twin consequences 

(v• ß v•)o+ = 4(•• Re [•(z, 0+)] 
(26) 

(v• + v•)• = 4 Re [•(z, •)] 

Now, a minimal requirement for time independence of ß is 
that •(z, 0 +) = •(z, •). This immediately excludes plane 
strain problems for which boundary conditions are given 
solely as applied tractions, since these are well-known to have 
stress solutions with no dependence on elastic moduli. Equa- 
tions (26) show that (v• + v•) should depend on the effective 
Poisson ratio (•v•, which is v. at t = 0 and v at t = •) and 
should be specifically proportional to (l - v•)-•, with no other 
dependence on v•, if the minimal requirement is to be met. This 
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is exactly the feature of some basic singular elasticity solutions, 
such as the classical plane strain solutions for an isolated edge 
dislocation and an isolated line force, which led us to extract 
their counterparts for a porous solid. Booker [1974] found the 
corresponding time dependence in his dislocation solution for 
the special case of incompressible constituents, but his formal- 
ism does not permit tracing its source to the structure of the 
classical elasticity solutions. 

COMPLEX VARIABLE REPRESENTATIONS 

OF SOLUTIONS IN PLANE STRAIN 

We present a complex variable representation in this section 
for the solution of the equations governing states of plane 
strain. It is motivated by the success of the corresponding 
formalism in classical elasticity [e.g., Muskhelishoili, 1953]. 
Stresses and displacements will be expressible in terms of two 
analytic functions, cI>(z, t) and •(z, t), together with p or M. 
The last two are not analytic but may be written p(z, œ, t) or 
M(z, œ, t) to show explicit dependence on 2 = x• - ix•.. It will 
be convenient to regard z and its complex conjugate z- as being 
formally independent so that any function h(x•, x•., t) may be 
alternately expressed as h(z, 2, t). This is the process familiar in 
formally assigning characteristics to elliptic partial differential 
equations, and we may convert partial derivatives according to 

•h/Oz = Oh/Ox•- iOh/Ox•. 

Oh/02 = Oh/Ox• + iOh/Ox•. 

Now the equilibrium equations (22a) become a single equa- 
tion 

Oa/Oz = Or/02 (27) 

where a = (a• + a•.•.)/2, r = (a•.•. - a•)/2 + ia•., and this 
result prompts us to rewrite (23) in the forms 

tr = •(z, t) + •(2, t) -- r/p(z, 2, t) (28a) 

1 --v 

- 
-- M(z, x, t) (28b) 

2(1 -- v•) 

where CI,(z-, t) -- tI,(z, t) is simply a complex conjugate, so 
written to emphasize that CI, is analytic around i when ,I, is 
analytic around z. Equation (27) now implies, on simple in- 
tegration, that 

O•(z,t) f•iOp(,z,•',t) d•.(29a) r = • Oz + ,I%(z, t) - • •,,• Oz 

( ) Oq,(z,t) 1 -- v 2 + xp•(z, t) r = xl -- vu/ Oz 

_ (vu--v)f•i OM(z'•"t) d•' (29b) 2(1 -- v•) • . • ) Oz 

Here the analytic functions f(z, t) and g(z, t) arise as arbitrary 
integration limits and will be chosen to suit the region, bound- 
ary conditions, etc. The second Goursat function •(z, t) is also 
an arbitrary function of integration on which the subscripts p 
and M imply its dependence on the representation chosen. 
Obviously, arbitrariness in the choice of the lower integration 
limits f or g is interchangeable with that in the choice of the ,I,. 

Formulae for the displacements u• and u•. may be obtained 
by observing that 

O(u• - iu•.)/Oz = -[(e•.•. - •)/2 + ie•.] = -r/2G 

Re [0(u• - iu•.)/Oœ] = e• + e•.2 = (1 - 2v)a/2G 

+ 2•(1 - v)p/G = (1 - 2vu)a/2G + (vu - v)M/G 

which may be combined with (28) and (29) to get u -- u• + iu•.: 

2Ga --- (3 -- 4v)•(2, t) -- 2•(z, t) 

-- •bv(z, t) q- rl p(z, •', t) d•' 
(•,t) 

Pu 

-- •,•(z, t) + 2(1 -- •,,) ,.t• 
where 

gO(z, t)/gz = •(z, t) 

but 

and 

O•b•,(z, t)/Oz = •,(z, t) - •p[z, f(z, t), t] Of(z, t)/Oz 

(30a) 

(30b) 

t)/Oz = t) 

_ v•, -- v M[z, g(z, t), t] Og(z, t)/Oz 
2(1 -- v•,) 

Finally, it will be necessary later to have formulae for the 
force vector F = Fx + ifs. resulting from integration of the 
traction vector Tx + iT•. along any contour in the plane. With 
reference to Figure 1, elementary equilibrium considerations 
suffice to show that 

f.' -- i ( F• -- iF,) = -- i (rl -- iT,) ds 
80 

= (a d2 + r dz) 
o 

and the latter integral, path independent in any simply con- 
nected region containing no singularities, is easily performed 
to get 

---i(F• -- ifs) = •(•, t) + •0, t) 

+ •(z, t) -- • p(z, •, t) d• (31a) 
(z,t) 

-i(F, -- ifs) = • [•(•, t) +2•(z, t)] 

FUNDAMENTAL SINGULAR SOLUTIONS FOR STRAIGHT 
DISLOCATIONS AND LINE FORCES 

As an application of the foregoing formulation, we consider 
the sudden (but quasi-static) introduction, at t = 0, of an edge 
dislocation with Burgers components bx and b•. (denoted by b 
-- bx + ibm.), toget.her with a point force P --- Px + iP•., acting on 
the solid phase, at the origin of an infinite porous medium. The 
singularity is to be maintained for all time t > 0. The appropri- 
ate classical elasticity Goutsat functions, •(z) and xI,(z), are 
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Fig. 1. Tractions on any arbitrary contour in the plane. 

defined by (28) and (29) when we set v =- v. = v.; their form is 
well-known to be 

2Gb- iP 1 D 1 
q,(z) = = 

8,ri(1 -- v.) z 1 -- v. z 
(32) 

--2G•- (3 -- 4v,)i• 1 
,X,(z) = - 

8•'i(1 -- v,) z 

Since hydrostatic stress in these limiting elasticity solutions is 
simply a multiple of Re [•], 

(1 -- vu) (33) 

4 [ql + = (5--5 Re 
We observe that these satisfy the minimal requirement for time 
independence, and we now proceed to find a solution that 
indeed verifies that $(z, t) is time-independent. 

The fluid content parameter M (equations (20b)) always 
satisfies cV2M - OM/Ot, presently in the infinite medium, 
subject to M(t = 0 +) -- 0. By setting p(t = c•) = 0 in (20c), we 
get M(t -- c•) -- (a•x + a22)•. The solution giving appropriate 
decay at infinity is 

M = (1 -- v) q- ? exp (--zg/4ct) (34) 
In order to use (30b) and (3lb), we require the integral 

I = q- exp (--z•'/4ct) d•' 
Zo 

4ct D 
-- 2 [exp (--ZZo/4Ct) -- exp (--zi/4ct)l 

-3- zo• 1 -- •c-• -3- • \4ct/ -- ' 
Here we have set g(z, t) - z0, a real constant. We shall find that 
z0 must be 0 in order to comply with the classical elasticity 
stress solution at t -- c•. This value seems to generate a 
divergence in evaluating displacement, but such anomalies are 
familiar, and we consider only the contribution, from the 
integral, which generates a function with a branch-cut, since 
only the jump in u or F will be specified. It is thus adequate to 
write 

4ct D 
[1 -- exp (--z•/4ct)l q- D In • 

f0 • /9 q- [exp (--z•'/4ct) -- 1]-• d•' (36) 

and comment that u diverges like In z near the origin, as in 
classical elasticity. Thus the jump generated by I is constant in 
time. We now propose that 

½(z, t) = A(t) In z •M(z, t) = B(t) In z (37) 

so that the jump conditions, deduced by using (36) and (37) in 
(30b) and (3lb), take the form 

2G• = -i--•-• (3 -- 4vu)(-- 2ri).if(t) -- 2riB(t) 

(1 -- v)(1 -- 

iP = (1__--• •___)(_ 2ri).if(t) q- 2riB(t) 
\1 -- v•/ ' 

(2riD) 
(38) 

q_ vu -- v (2ri D) 
(1 -- v)(1 -- vD 

The solution of (38) is a time-independent A(t) and B(t), 
namely, 

A(t)= A = 2Gb -- iP _ D •(z, t) ,4 (39) 
8ri(1 -- v) 1 -- v z 

B(t)--: B-- --2G•-- (3 -- 4v)iP •(z, t)-- B (40) 
8ri(1 -- v) z 

The time-dependent stress field may now be obtained from 
(28) and (29). For this purpose, we need one last integral: 

• 0 M(z, g', t) o dr 
(4cth 

= 4,4\•r][exp (--ze/4ct) -- exp (--ZZo/4Ct)] 

_3_ 2• [g exp (--zg/4ct) -- Zo exp (--ZZo/4Ct)] 

_3_ 2__J [exp (--z2/4ct) -- exp (--ZZo/4ct)l (41) 

By imposing the known elasticity solution at t = c• in (29), we 
deduce z0 -- 0, as already mentioned. 

Stress field of an edge dislocation. As an example imple- 
menting the expressions just derived, we obtain the stress field 
for the isolated edge dislocation shown in Figure 2; for this, A 
= -B, and thus 

A Gb• e 
q•(z) = --•(z) -- - (42) 

z 47ri(l -- •) r 

whereas (34) takes the form 

M = --Gb, sin 0 exp (--r2/4ct) (43) 
r(1 -- •) r 

Now (28b) may be used to find 

+ oo) = «(*,, + 

ab, I(1 -- v) -- (•,, -- _v) exp _(--r2/4ct) 1 2rr (1 -- v)(1 -- v,•) .] sin 0 (44) 
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The polar coordinate version of the deviator stress is 

•(aoo- arr) + iarO = exp (2iO)[•(a,.,.- a•) + ia•,.] (45) 

and, when (41) and (42) are inserted in (29b), we find 

«Oroo -- art) q- i•rro -- iGb, {( cos 0 2•rr 1 -- 

0,, - •) (1 -- v•,)(1 -- v) /sin 0 exp (--r•4ct) 

+ 4•t (1- exp (--r2/4ct))(cosO--isin 0)1 } (46) 

The pore pressure is obtained by substituting (43) and (44) 
into (20b), and the complete set of field variables is then given 
by 

(5 = 6(x,, t) = u,(x,, 0 +, t) - u•(x,, 0-, t) (48) 

The single dislocation solution just presented corresponds to a 
slip function b = b•[1 - U(x•)]U(t), where U is the unit step 
function. For a continuous slip function, the infinitesimal dis- 
location accumulated in time dt within an element of length 
dx• can be identified as 

0 2 {•(Xl , t) 
bt = Ox• Ot dx• dt (49) 

which induces stresses and pressure given by (47) with origin at 
x• and time measured from the instant t of accumulation. By 
summing (i.e., integrating) all such infinitesimal contributions 
along the fault line over all preceding duration of slip we get 
the stress field at any time due to whatever slip b(x•, t) has 
occurred. 

For example, the shear stress r (--a•.) induced along the x• 

Gbl(v•, -- v) 
2rr(1 -- vD(1 -- v) 

sin O{ 2 exp (--r•'/4ct) 1 -- v 4ct } 'i [1 -- exp (--r"/4ct)] 
Pu • P F 

cos • [1 -- exp (--r•'/4ct)] 

sin O{• [1-- exp (--r•'/4ct)] 
sin 0 r/-l[l -- exp (--r•'/4ct)] 

(47) 

In particular, the solution for p and a•0 may be specialized to 
the case of incompressible constituents (v,, = •, B = 1), and 
then the solution obtained by Booker [1974], by using integral 
transforms on the McNamee and Gibson [1960] equations, for 
a fault or slip represented by a dipole pair of edge dislocations 
can be written down directly. This is an elementary application 
of (47); in the next section we take (47) as the starting point for 
a discussion of shear faults in fluid-infiltrated materials and of 

the manner in which interactions between the rupturing solid 
phase and its pore fluid may affect the rate or time dependence 
of fault spreading. 

APPLICATION TO SHEAR FAULT MOTION 

IN FLUID-SATURATED MATERIALS 

The use of dislocations, either discretely or continuously 
distributed, to simulate the introduction or propagation of slip 
in masses of rock or soil is well-exemplified in the literature 
[e.g., as summarized by Cleary, 1976] for the situations where 
the material can be approximated as linear elastic. These ex- 
amples arid applications, such as mining settlements, induction 
of large single hnd network fractures, slip-surface propagation 
in progressive land sliding, and aseismic earth faulting, often 
have time dependence associated with them. A partial account 
of this dependence may possibly be taken simply by replacing 
elastic influence functions for the dislocations by the time- 
dependent stress field just derived. Indeed, since porous media 
effects have been cited recently as possible contributors to 
aftershock activity [Nur and Booker, 1972; Booker, 1974] and 
to the stabilization of shear rupture zones against rapid propa- 
gation [Palmer and Rice, 1973; Rice, 1973], we here consider 
the representation of a time-dependent shear faulting process 
by a continuous array of dislocations. 

Let the fault lie along the x• axis and let the relative sliding 
or slip on the fault be defined from the displacement field ut(x•, 
x•., t) as 

axis, owing to a slip dislocation b• introduced at position x•' 
and time t' is, by (47), 

Gbt 1 

r(x• t) 2•r(l -- v,,) x• -- x• 
ß œ[(x•- xt')2/4c(t- t')] t > t' (50) 

where 

œ[sc] = 1 - [(v,, - v)/(l - v)]•-•(l - e -•) 

Note the decrease of œ from unity at short times (or great 
distances) to the value (1 - vu)/(l - v) at long times (or short 
distances). Thus if the slippage b is prescribed over some 
region L -- L(t) of the x• axis, starting at t = to, and if the 
applied stress distribution (i.e., that which would be present at 
any point and time if slip had not taken place) is 7'appl(X1, t), 
then the stress r(x•, t), as altered by the slip, is 

b=b I 

x 2 

x 
I 

½ 

Fig. 2. An edge dislocation at the origin of coordinates in the plane. 
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Fig. 3. (a) Schematic of a shear fault, showing relative slip 6 and 
shear stresses r on the line of the fault. (b) A simple failure criterion 
for material on the fault. Endurable shear stress is related to effective 
normal compressive stress and amount of sliding. Note that reductions 
in p, induced transiently by prerupture dilatancy, increase the resist- 
ance to fault spreading. 

r(x,, t) = r.p.i(x,, t) 

o f'f 2•r(1 -- v,•) o. (,,) Ox,' Ot' 

r'(Xl "--- F]')21 dXl' dr' 'eL4c(t -- t') x 1 -- •,•'1 ! (51) 

where the integral on x•' is taken in the Cauchy principal value 
sense. 

It is, of course, seldom the case that • is given and r is merely 
to be calculated by integration. Rather, the integral relation is 
to be understood as a first step toward an integral equation 
governing the slippage when certain information is given con- 
cerning its left-hand side; this formulation is analogous to the 
representation of cracks as dislocation arrays in classical elas- 
ticity, the exact density in the array being chosen as that 
satisfying an integral equation that expresses, for example, the 
condition that the crack surfaces be stress free [e.g., Bilby and 
Eshelby, 1968; Cleary, 1976]. 

The simplest condition on r is that analogous to the freely 
slipping shear crack, namely, that r has some reduced value, 
say a frictional sliding stress rr, everywhere along the region 
L(t) of slippage, where L(t) is given a priori, and the friction 
stress 7? (<7'app], at least in some average sense) is that residual 
resistance remaining after completion of the 'breakdown' 
process at the ends of the spreading fault zone. In that case, 
stress singularities will result at the spreading ends of the fault, 
and the condition for fault propagation can be phrased in 
fracture mechanics terminology [e.g., Rice, 1968] as the re- 
quirement that a critical energy release rate, expressible in 
terms of the strength of the singularity, be achieved for propa- 
gation. Indeed, this kind of characterization has been pro- 
posed for shear faults in overconsolidated soils by Palmer and 
Rice [1973] and for earthquake faults by Husseini et al. [1976]. 

Models can also be formulated that include a more detailed 

account of the breakdown process: following Palmer and Rice 
[1973] and with reference to Figure 3, the shear stress r can be 

considered to be some prescribed function of the slippage •i 
near the tip of the fault, decreasing from a breakdown stress 
level re, sufficient to initiate slippage, to the residual friction 
level rr after large amounts of sliding; re, rr, and the values of 
r at intermediate values of •i increase with the local 'effective' 

compressive stress • (=a - p, where a is the total compressive 
stress) acting on the fault, as illustrated. This formulation 
removes the point stress singularity at the tip in favor of a 
direct (if oversimplified) model of the breakdown process. 
With it, r(x•, t) on the left side of (51) is expressible as a 
function of •i(x•, t) at all points that have previously been 
brought to the breakdown stress level, and hence (52) becomes 
a nonlinear integral equation for •i. 

Solutions for similar models in the classical elasticity con- 
text have been given by Palmer and Rice [1973], and a general 
numerical scheme has been presented by Cleary [1976]. In 
cases for which the size co of the end region (Figure 3), over 
which strength degradation takes place, is small in comparison 
with overall fault length, the propagation criterion from this 
model accords with the fracture mechanics point singularity 
approach, and the effective fracture energy is equal to the 
shaded area in the r versus •i plot of Figure 3. It is thus possible 
to give simple estimates of how the aforementioned features 
affect progress of a fault. 

Pore fluid effects in the stabilization of fault spreading. Two 
distinct mechanisms have been proposed by which the cou- 
pling between pore fluids and deformation can stabilize a shear 
fault against rapid growth [Palmer and Rice, 1973; Rice, 1973], 
and these may be important for explaining observed fault 
creep events [e.g., King et al., 1973]. The first is that, for a 
given set of stresses exerted on a fault, the amount of energy 
that can flow to its tip in a unit advance will be different 
according to whether the surrounding material responds in an 
undrained or drained fashion (or, in general, in a way inter- 
mediate between these short and long time extremes). More 
energy is released under drained than undrained conditions 
(see below), and hence the magnitude of the applied stresses 
necessary to deliver some fixed energy to the breakdown proc- 
ess must increase with the speed of fault spreading, the impli- 
cation thus being that a stable creeplike rupturing process 
exists, at least over some range of driving stress. 

• Toppl 

X 2 

IA dilotionol slip I 

i dislocations) I dis / I Iocat,.• x, 
i 

neor tip 
T B breakdo,•n zones 

I 

'r(x•, t) 

Fig. 4. Simulation of relative sliding and dilation, on the linc or the 
shear fault, by a continuous density of dislocations. 
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'i•he response for the two limiting cases may be ascertained 
directly from (51 ), for which œ may be given its short and long 
time values, 1.0 and (l - v•,)/(l - v), respectively. Then the 
time integration is trivial, and the equation reduces to the 
corresponding crack integral equation of classical elasticity 
[e.g., Bilby and Eshelby, 1968], with the elastic properties en- 
tering in the form G/(l - v•) fbr the short time (rapid fault 
creep) response and G/(l - •) for the long time (slow creep) 
response. Of course, these are the same forms in which elastic 
properties enter the expression for energy flow to the crack tip: 
for the simplest case of a plane strain fault of length l with 
uniform applied stress and constant resistance rF everywhere 
except near a small end zone, the energy flow to the break- 
down process per unit of newly created fault surface [e.g., 
Rice, 1968; Palmer and Rice, 1973] is 

c•' = •r(l - v•)(r•..•- rF)=l/4G (52) 

Hence if the fracture energy can be taken as essentially 
independent of the speed of fault creep, the ratio of the driving 
stress required for slow (s), as opposed to fast (f), completely 
undrained, but still quasi-static, fault spreading is 

= [(l - •,)/(l - •,•)]'/' • z• '•' (53) 

This is 1.13 for data representative of sandstone (v = 0.12, 
= 0.31 ) and may be somewhat higher for heavily fissured rock 
masses or for soils, in which cases v,, = 0.5; for example, fl•/2 is 
then 1.30 if v = 0.15. Hence no fault spreading can occur on this 
basis if the driving stress is less than (rapp• - rr)s, and it must 
exceed (rapv• - rr)r for seismic spreading to ensue. 

(Since preparation of the original version of this manuscript, 
a full analysis of a shear fault advancing at steady speed in a 
fluid-infiltrated porous material has been given by Rice and 
Simons [1976]. Remarkably, they find an effect even greater 
than that indicated by the above comparison of the completely 
drained and completely undrained cases. Indeed, the greatest 
resistance to fault spreading is found to occur at an inter- 
mediate speed, and at this speed the ratio corresponding to the 
left side of (53) has a value lying between /•/' and /•. The 
higher value is approached when the size of the end region is 
an extremely small fraction of fault length, the lower value 
when the end region is large. By using a field diffusivity c 
cm'/s [Anderson and Whitcomb, 1975], Rice and Simons report 
that the range of fault lengths and spreading speeds given by 
King et al. [1973] as representative of San Andreas creep events 
are, when they are compared with the theoretical predictions, 
supportive of the notion that the fluid interaction effects under 
discussion could indeed be active in fault stabilization.) 

The second means by which porous media effects can stabi- 
lize fault propagation is complementary to the first and in- 
volves the fact that the rupture process'in the breakdown zone 
may entail nonlinear dilatant deformation of the rock, owing 
to local propping at asperities and to the opening of new or 
existing fissures. Hence pore fluid suctions are induced when 
the time scale is insufficient for their diffusive alleviation, and 
by the effective stress principle, the material in the breakdown 
zone is 'dilatantly strengthened' over the resistance to defor- 
mation that it would show under less rapid, drained condi- 
tions. The extent of the strength increase for completely un- 
drained deformation of a material element can be estimated 
from a formulation of its inelastic stress-strain relations in 

accord with the effective stress principle [Rice, 1975]. 
Within our present linear elastic context, in which the break- 

down zone is represented as a prolongation of the fault plane 
(Figure 3), the dilatancy during rupture can be simulated as a 
continuous array of opening dislocations within the end re- 
gion, as on the right in Figure 4; these are superposed on the 
main array of slip dislocations. The effect of the pore fluid 
suction distribution thus induced along the fault plane is to 
increase the effective compressive stress 8, and as illustrated on 
the right in Figure 3b, this will raise the level of the r versus b 
curve and hence result in an increase in the shaded area, which, 
as has been remarked, is a measure of the fracture energy 
required for fault propagation. Th'us the effect again serves to 
stabilize the fault against rapid spreading, for the induced 
suctions will be greater the greater the speed of fault creep. 

Rice [1973] provided an approximate estimate of these in- 
duced suctions through a treatment that regards the solid and 
fluid phases as separately incompressible (soil mechanics case); 
assumes that the dilation is equivalent to the induction of a 
flow of fluid into the end zone •o at a uniform rate, so that a net 
height h of fluid is indrawn per unit area of newly created fault 
plane; and treats the diffusive flow as that corresponding lo- 
cally to one-dimensional consolidation in the x, direction un- 
der a constant total compressive stress (i.e., p is assumed to 
satisfy the equation C6•2p/6•X2 2 = c•p/c•t, where the net vol- 
umetric flow rate, 2K(c•p/c•x2), is given on x2 = 0 as Vh/½o when 
a material point is within the end region). This results in a 
suction distribution that is at a maximum at the trailing end of 
the breakdown zone and has there the value 

--(Ap)ma x m (A•')max • (Vh/2Ko.,)(4co•/rrV) •/' 

= [4(1 - v)Dr(l - 2v)](Gh/co)(•rcoV/4c) •/2 (54) 

where, in the last rearrangement, (17) for c has been 
used in the form appropriate to incompressible constituents 
(B = 1, v,, = «), and V enters in the dimensionless com- 
bination o•V/c. There seems, unfortunately, to be inadequate 
data from which to deduce numerical values of the 

parameters, although estimates have been made by Rice 
[1973] for shear faults in clay soils as part of a discussion of 
time effects in progressive failure of slopes. 

By contrast, the porous media effects discussed by Nur and 
Booker [1972] and Booker [1974] entail a partial destabiliza- 
tion of a recently slipped fault. As is clear from (51), the stress 
alterations in faulting will have their greatest values immedi- 
ately after a sudden slip (œ = 1.0), whereas they will relax by 
the factor (1 - v,,)/(l - v) after a long time. Hence the shear 
stress builds up gradually on the part of the fault where the 
stress was relaxed by the sudden slip, while it decays in the 
more highly stressed regions bordering the zone of spreading. 
This sequence has been proposed as consistent with limited 
subsequent faulting, in the form of aftershocks, along the 
region that slipped in the sudden faulting. 

STRESSES NEAR A PRESSURIZED 

CYLINDRICAL CAVITY 

As another example of a fundamental plane strain solution, 
derivable within the complex variable formalism now available 
to us, we consider a circular cylindrical hole of radius a in a 
body of porous saturated material with concentric circular 
outer boundary at radius b (Figure 5). The body is to be 
stressed so that the resultant field depends only on the radial 
coordinate r: for instance, by pressurizing the test fluid filling 
the interior of the hole. Despite its simplicity, the problem has 
direct relevance for initiation of hydraulic fractures in deep 
boreholes [e.g., Haimson and Fairhurst, 1970], and interior 
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Fig. 5. Typical annuLa•r specimen employed for determining fracture 
strength of rock specimens by internal hydraulic prcssurization. 

fluid pressure is increasingly being used for laboratory tests tc 
determine the tensile strength of cylindrical rock specimens 
with drilled central holes [e.g., Johnson et al., 1973]. 

Sincep = p(r, t) and ? = zi, we may usep(p, t) ando •' --z•' in 
the integrals of (29a), (3i)a), and (31a). By noting that 

d•' = 2(p/z)dp c•p(z, •', t)/az = (•)(•/z) x/= ap•, t)/ap 
we can convert the integrals to simpler radial dependence 
only: 

p(z, •, t) d• = - pp(p, t) ap 
•/• (55) 

• lOp(z, •, t)/Oz] d• = ;1• O•[0p(O, t)/OO] do 
We have chosen f(z, t) • a•/z so that the integral entails only 
real values of p. 

By recalling (44) and (45) and recognizing e •ø = z•/•, we 
can transform (28a) and (29a) to polar coordinates: 

•(• + •oo) = •(z, t) + •(•, t) -- np(r, t) 

1 • O•(z, t) =-• d • (56) •(•oo - •) + i•o r 

•• =Op(p} t•dp 3 + z•(z, t) -- n P O p 
where we nave dropped the p subscript on •(z, t), since we 
will not use the M representation. Also, we recall that the 
material property • is defined in (220); it will prove an impor- 
tant parameter in discussions of hydraulic fracture, and nu- 
merical values are given subsequently. 

Symmetry demands that the above stresses be independent 
of 0 and that • = 0; only one possible solution has these 
features, namely, 

•(z, t) = N(t) In z + C(t) •(z, t) = S(t)/z • (57) 
where, in the most general case, N, S, and C are unknown 
functions of time. But if N In z and Nz In z - Nz are entered 
for ß and •, respectively, in (30), we find a jump of the type Nr 
in the value of uo (the circumferential displacement) as we 
traverse a closed circular contour of radius r >a, namely, we 

find a wedgelike dislocation. By specifying that such disloca- 
tions are not present, we deduce N -- 0. Then the stresses 
simplify, after using integration by parts once, to 

(r00 = 4C(t)- 27p(r, t)- (rrr (58a) 

(rr• -- 2C(t) -- • IS(t) • 7a2P( a, t) 
-]-- 27 ,, PP(P, t) gO (580) 

where p is to be obtained from the polar coordinate version of 
(24), namely, 

rO•'p5 1 Op} Op 2(v,, -- v) gc(t) CL•-+; • = • + 7(1 -- v,,) dt (5q) 
We note that Geertsma [1957] has given the more usual body 
force approach to the same general problem of radial symme- 
try in a porous medium. But he erroneously disposes of the 
derivative dC/dt in (59) and so concludes that p satisfies a 
homogeneous diffusion equation: this step will be seen justified 
only when b/a --, oo, and then only because C(t) --, O. 

A variety of boundary conditions may be imposed; for 
instance, either the total radial stress or the radial displace- 
ment and the pore pressure, or the rate of fluid mass exchange 
with surroundings may be specified as functions of time at 
either boundary. A problem of practical application, to be 
studied here, is that of a fluid-filled cavity in which the fluid is 
suddenly (at t = 0) subjected to a pressure po, equal total stress 
and pore pressure at the boundary thereby being induced, 

•Aa, t)=-po t >0 (60a) 

p(a, t) = !Jo t > 0 (60b) 

We suppose, for the rr!,.oment, that the outer boundary is free 
of stress and fluid pressure 

•(b, t) = p(b, t) = 0 t > 0 (6•) 

By using (60), we may solve for S(t) in (58b) 
s(t) = a:[2c(t) + (l - 0)•o] (62) 

and then • is given by 

<r• == 2(1 -- a2/r•')C(t) 

-- -• a•po -3- 27 pp(p, t) dp (63) 

By making • vanish (equation (61)) at r = b we find an 
implicit equation for C(t). 

½(•) = (•. _ •)-• •0 + • •(•, •)g• (64) 

which is, in fact, a linear integral equation to be solved after 
has first been determined, as a functional of C(•), from ($9) 
with (605) and (61) as boundary conditions. The process is not 
simple to carry through, so here we just study the special cases 
o[ short and v•ry long times. 

•or•-fim• •ol•fio•. Immediately alter the loading has 
been applied, the classical elasticity solution (with 
applies in all o[ the region • < r < 5. Bquations (2•) and (•g) 
m•y be used in (24) to find a relation between p(r, 0 +) and 
C(0 +) attained immediately alter loading. Alternately, (•9) 
may be integrated [rom • = 0- to • = 0+; in any case, the result 
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p(r, 0') --- 2(v•, -- v) C(0*) a < r < b (65) •(1 - 

and, when this is substituted into (64), we may solve to get 

(1 -- v,,) a •o c(o+) = 
2(1 -- v)(b 2 -- a 2) 

(v,, -- v) a•po p(r, 0 +) = rt(1 --v)(b 2-- a 2) = pe (660) 
The instantaneous stresses (t = 0 +) are now obtained from 
(63) and (58) as 

O'rr--' Po .•-•-• (1 -- a•/r ") --poaer • 

•r00 = Po ••-• (1 -3- a2/r 2) -3- poa"/r" (670) 
We emphasize that (66) and (67) are valid only for a < r < b 
and are independent of boundary conditions on pore pressure; 
especially, they do not apply right at the boundary, r = a, 
where p = po by definition. The physical implication is that the 
short-time (t = • in Figure 5) pore pressure distribution has a 
steep gradient from Po at the wall to the negative pe in (660). 

Even after a very short time •, there are points (at r = R) 
sufficiently close to the wall that the applied pore pressure p = 
po has penetrated (e.g., choose (R - a) << (4c•) •/2 << a); err 
retains its value, -Po, as does C(0 + ) in (66a). All of these, using 
(58), give 

[2(1 -- v") a• •r•0 = (1 -- v) (b 2-- a 'ø) -3' (1 -- 2r/) Po 

(66a) 

(67a) 

•r• --= --Po (68) 

As is familiar in thermoelastic problems of heat application to 
a surface, there is also a steep gradient in the total circum- 
ferential stress near the wall, from the value in (68) to that in 
(67b). In all these cases we have omitted aaa: if this is needed, 
for instance in examining a generalized Coulomb hypothesis 
for failure at the wall, it is trivially computed from (19). 

Steady flow, after 'very long' time. The situation here is 
that p and C(t) become time independent in (59), of which the 
solution subject to (60b) and (61) then is 

p(r, •) = po[log (b/r)]/log (b/a) a < r < b (69) 
,The value of C(•o) is now obtained from (64), after in- 
tegration, as 

C( co ) -- po(b 

ß (1 -- .)a:/2 +• (b • -- a2)/log (b/a) (70) 
The complete stress field may be obtained from (63) and (58), 
but we have particular interest in the region near the inner 
wall, where 

•r00 = ' -- a 2) + log (b/a) + (1 -- 2r/) po 

loading, the alteration in total radial stress is zero), then the 
final state must be p -- po everywhere, and (64) gives 

C(c•) = po[r/ + (b•'/a •'- 1)-'1/2 (72) 
from which, again at the wall, 

eoo= [1 + 2(b•'/a •- l)-•]po O'rr = -Po P = Po (73) 
Complete solution for infinite outer radius. The special case 

b/a -• c• allows us, formally at least, to write the whole time 
and space variation of the variables err, eO0, and p because C(t) 
= 0 from conditions at infinity, and so (59), subject to bound- 
ary condition (600), has the solution [Carslaw and Jaegar, 
1960, section 127] 

P = po -3- 2po exp (--cu2t) 

Jo(ur) Yo(ua) -- Jo(ua) Yo(ur) du 
ß Jo•(ua) q- Yo:(ua) •- (74) 

In the region r > a such that (r - a) << a, the solution has the 
asymptotic expansion 

p -• po(a/r) •/• erfc [(r- a)/(4ct) •/•] (75) 
where 

fo x erfc (x) ----- 1 -- (2/•r '/•) e.•p (--92) dp 

This solution allows us to quantify and trace in time the 
progress of the zone of diffusing pore pressures as it penetrates 
inward from the boundary, replacing the pressure in (660) by 
the imposed value po. As a first estimate, from (75), we may 
expect that after time t = T, the pore pressure will be 0.9po or 
greater up to a depth (R - i•) -•0.2(cT) •/•. Incidentally, the 
complete stress field is obtained from'inserting (74) into (63) 
and (58), with C(t) -- O. 

MATERIAL PARAMETERS AND INCEPTION 
OF HYDRAULIC FRACTURING 

Laboratory tests on specimens of various rock types show 
that the elastic moduli G and v vary strongly at high values of 
the hydrosta•tic effective stress [e.g., Nur and Byedee, 1971] 
and, naturally, with increasing devjatoric stress [e.g., Rumrnel, 
1974]; the porosity Vo and the permeability k also vary with 
substantial changes in effective stress [e.g., Zoback and 
Byedee, 1975]. However, it is appropriate for present purposes 
to list (Table 1) some typical rock properties at low to moder- 
ate effective stresses: these have been culled mainly from the 
work by Rummel [1974], Nur and Byedee [1971], Zoback and 
Byedee [1975], and Haimson and Fairhurst [1970]. Modifica- 
tions from other sources were made when available, so that the 
numbers given may be considered average rather than appli- 
cable to a specific sample. Table I merits some comments: 

1. The bulk modulus K r of the pore fluid is representative 
of liquid, water or oil. The bulk modulus of the solid phase Ks 
is that of quartz for the sandstones; it has been measured [Nur 
and Byedee, 1971] for the granites but is simply guessed for 
Tennessee marble. These particular rocks have been chosen 
either for their occurrence in earthquake test regions or for 

• O',-r -- --Po (71) their use in hydraulic fracturing experiments. 
Another possibility is that the outside (r = b) is jacketed, and 2. The second section of the table contains the derived 
thus no flow is allowed. If zero total radial stress is still applied parameters, B, vu, r/, and c (from equations (4), (6), (22), and 
there (experimentally, a constant jacketing pressure in the (17), respectively), and it also contains an expression, g,o, of 
triaxial apparatus, so that for superposition of the effects of the permeability measure commonly used in soil mechanics, 
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TABLE 1. Typical Rock Properties, Measured and Computed 

Rock Types 

Ruhr Tennessee Charcoal Berea Westerly Weber 
Property Sandstone Marble Granite Sandstone Granite Sandstone 

Section I 

G, kbar 133 240 187 60 150 122 
v 0.12 0.25 0.27 0.20 0.25 0.15 

t;0 0.02 0.02 0.02 0.19 0.01 0.06 
k, md (10 -xx cm 2) 0.2 (10 -4) (10 -4) 190 4 X 10 -4 1.0 
Ks, kbar 360 (500) (454) 360 454 360 
Kf, kbar 33 33 33 33 33 33 

Section 2 

B 0.88 0.51 0.55 0.62 0.85 0.73 

vu 0.31 0.27 0.30 0.33 0.34 0.29 
r• 0.28 0.08 0.08 0.30 0.16 0.26 
Kw, cm/s 2 X 10 -v 10 -lø 10 -lø 2 X 10 -4 4 X 10 -lø 10 -6 
(u/uw)c, cm2/s 53 0.13 0.07 1.6 X 104 0.22 207 

The viscosity of water is taken as uw = 0.01 P and 1.0 bar • 10 • dyn/cm •. 

namely, the velocity of flow of water under a pressure gradient 
of unit head drop of water per unit linear distance. For com- 
parison, we note that clays of low permeability have K•o < 10 -7 
cm/s, so that the term 'impermeable' may seem appropriate to 
the granites and marble. However, what is really important, 
certainly for the fracturing and slip phenomena considered in 
this paper, is the rapidity with which pore pressure per- 
turbations in some regions are damped out or transmitted to 
adjacent regions. It is clear from (47) and (75), or from any 
elementary diffusion solution, that this relation between dis- 
tance (X, measured from source or perturbation) and the time 
elapsed (T) is given by X - 0.2(cT) •/2, where the factor (0.2) 
arbitrarily arises from the requirement that the intensity of the 
change at X be 90% or more of the initial perturbation. If we, 
then, inspect the values for c in Table 1, we observe that even 
the marble gives values of X -• 0.9 mm for the passage of 1 s of 
time, when u = u•o. In a hydraulic fracturing experiment 
lasting at least 10 s, and even after allowing for an oily fractur- 
ing fluid penetrating dry rock, we shall suggest that sufficient 
penetration occurs to affect the pressures required for fracture. 

3. A variety of earthquake-associated phenomena display 
a common value of c -• 104 cm2/s [e.g., Anderson and Whit- 
comb, 1975]; the Weber sandstone, typical of the Rangely test 
region, shows only 2% of this value, and so joints or fissure 
networks (and some degree of dilatancy) must account for 
much of the diffusivity. Previously, computations have typi- 
cally been based on diffusion through a rigid rock matrix: it is 
interesting to note that the limiting form of (17), in that event, 
is c • KKr/vo (Zoback and Byedee [1975] seem inadvertently to 
have used t•Kr) and that this yields a value c -• 550 cm•/s for 
Weber sandstone (with water as pore fluid). 

4. The values of G and v, listed in Table 1, are mainly those 
for dry rock. Ideally, they should be obtained from completely 
drained quasi-static tests on a sample saturated with the ap- 
propriate pore fluid, but experimentalists regard these as slow 
tests. In light of the values of c and the discussion in 2, it is 
hard to understand why induced pore pressures, due to load- 
ing a sample of maximum dimension 5 cm (say), do not 
effectively damp out in a matter of minutes. 

Inception of hydraulic fracture from boreholes. It is fre- 
quently observed, when fracturing cylindrical rock specimens 
by hydraulically pressurizing a drilled central hole [e.g., Haim- 
son and Fairhurst, 1970; C. B. Raleigh, personal communica- 

tion, 1975], that very rapid pressurization (or a jacketed cavity 
wall) leads to a higher fracture pressure than that needed when 
pressurized fluid is allowed sufficient time to penetrate the 
walls of the cavity. We limit ourselves here to a preliminary 
simple explanation of this effect by proposing that fracture 
occurs when the maximum effective tensile stress, in the vicin- 
ity of the wall, reaches a so-called tensile strength ao. However, 
the expression for effective stresses is not necessarily the same 
for such an ultimate strength criterion as it is for deformation 
computations (equation (13)) but seems to be most accurately 
described [e.g., Cornet and Fairhurst, 1974] by the classical 
effective stress law, namely, 

ao' = ao + prSt• (76a) 

(fit')max __ 17. 0 (76b) 

The effective stresses are ao', of which the principal values are 
at', and (76b) is the chosen tensile stress fracture criterion. 
Such an empirical criterion is appropriate only if all flaws in 
the material are sufficiently small in comparison with distances 
over which the predicted stresses change appreciably, although 
the critical value ao will itself have a statistical distribution 
according to the statistics of flaw sites, sizes, and the linking- 
up process. 

The test configuration in Figure 5 is adopted as reference, 
and we note that the effects of any exterior confining pressure 
O'rr (r -" b) can be superposed in an obvious fashion, so we 
consider zero confining pressure. We now compute the frac- 
ture pressures for each of three different time scales of interior 
pressure application: 

1. The pressure is brought up so rapidly to the fracture 
value pr t that the fluid does not penetrate into the cavity wall 
(equivalently, the wall r = a may be jacketed). Then the elastic 
stress field in (67) and the pore pressure in (66b) may be used 
in (76) to obtain the maximum effective tensile stress, in the 
circumferential direction, near the wall; when fracture condi- 
tions are reached, this is 

[(b• -I- aa• ) (v,,--v) a •- )1 = -- -- =tro (77) • -- • r/(1 -- v)(b • a • 
or 
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p•t •'0 

The last approximation is made for b '• >> a '• (e.g., the speci- 
men used by Raleigh had b = 1.5 cm, a = 0.1 cm), but there is 
naturally a dependence on b/a in the exact expression. This 
variation ofpr • with the size of hole used (for given b) seems to 
render unnecessary the explanation of Haimson and Fairhurst 
[ 1970], whose data agree well with the predictions of (77), that 
the variation is related to changes in tensile strength. 

2. The fluid has enough time to penetrate the rock near r - 
a to a depth sufficiently great that a fracture of that length 
results in a stress concentration adequate to continue propa- 
gating. Then the required fracture pressure (pt s) may be ob- 
tained by adopting pr s as the pore pressure in the permeated 
region and using (68) to get 

aoo' --= •oo q- p 

[ 2(1--v") a2 = --' = a0 (78) (1 --v) (b 2 a 2) q- 2(1 -- 
or 

2( 1 - rt)pr s -• a0 

Again this last approximation is for b 2 >> a 2, and by setting 
the maximum effective tensile stress equal to the strength ao, 
we obtain a smaller fracture pressure, pr 
pr•/(2- 2r/). 

Actually, there will be a time dependence in the pressure 
required for fracture (as shown by the data of Haimson and 
Fairhurst [1970]), but the estimate just obtained constitutes a 
lower limit for p?: the data of C. B. Raleigh (personal commu- 
nication, 1975) support this assertion. Table 1 may be used to 
assess the factor (2 - 2r/), but (22b) gives r/= (1 - K/Ks')(1 - 
2v)/(2 - 2v) when (4) and (6) are employed. This last expres- 
sion shows that the very stiff rock matrices (e.g., marble and 
granite) will show a larger effect of fluid penetration than the 
more loosely structured sandstones. This expression for r/ is 
precisely that used by Haimson and Fairhurst [1970], but they 
assert that Tennessee marble and charcoal granite are too 
impermeable to show any effect of fluid penetration. Never- 
theless, their data for fracturing pressures distinctly show an 
effect that is time-dependent in a manner consistent with a 
dependence on depth of fluid penetration at the wall r = a. 

3. Haimson and Fairhurst [1970] show tests on Berea sand- 
stone where the time to fracture was so long and the rock so 
permeable that the fluid pressure had penetrated the whole 
way to the outer boundary. Even where the sample has been 
initially dry, it is sensible to apply our 'very long time' solu- 
tions to these tests. Suppose, as is probably most appropriate, 
that p(r = b) does not change during the test: then (71) may be 
used to find the maximum effective stress, induced by the 
fracture pressure pr t, which is also the pore pressure, at the 
inner wall r = a. We set this maximum tensile stress equal to 
the tensile strength a0 to find prt: 

aoo = eroo '3- p '•' 'log (b/a) '3- 2(1 -- r/) pvm ero (79) 
b•->> a •- 

This gives apr t slightly lower than pr •, but the lowest possible 
prt actually arises in the (perhaps unrealistic) situation where 
an outer jacket prevents escape of pore fluid: then (73), with a 
pore pressure pr t everywhere, gives a maximum effective stress 

aoo' -- aoo + p -• 2P• ,t -- ao b •' >> a • (80) 

In summary, the pressures required to initiate fracture from 
central boreholes in relatively intact specimens of a variety of 
rocks have been shown to depend strongly on the length of 
time during which the hydraulic pressure in the fluid-filled 
cavity is raised to the fracture pressure. A more careful analy- 
sis of the exact nature of time-dependence is postponed, but 
the limits of two separate time scales have been studied: it is 
clear that the 'tensile strength' a0 may be modified to include 
initial compressive stresses on the prospective line of fracture 
and that initial pore pressures may be taken as reference so 
that our results extend directly to hydraulic fracturing endeav- 
ors (and we take b • >> a •, as appropriate to these). For 
instantaneous fracturing the pressure is pr • -• ao, but this 
decreases to pr • ' a0/(2 - 2r/) if the fluid can penetrate a 
sufficient distance that a fracture of that length will continue 
to propagate (see Table I for r/ = (1 - K/Ks')(1 - 2v)/(2 - 
2v)). Over a longer time scale, the fluid may penetrate very 
deeply into the specimen and (if b/a is not infinite) almost 
reach a steady state at which the fracture pressure pr • is slightly 
less than p? (equation (79)); it seems, however, that the frac- 
tion (2 - 2r/)-', which is (1 -, v) if K/Ks' << 1, provides a 
reasonable lower limit for the drop in fracturing pressures to 
be expected with increasing time to fracture. The data of both 
Haimson and Fairhurst [1970] and C. B. Raleigh (personal 
communication, 1975) support our conclusions, although we 
do not dispense with mechanisms like stress corrosion as fur- 
ther factors influencing time dependence of fracture pressures. 

SPHERICAL CAVITY IN A POROUS SOLID 

An especially simple application of our equations to a three- 
dimensional problem arises in spherically symmetric ideal- 
izations of underground perturbations [e.g., Anderson and 
Whitcomb, 1975; Johnson et al., 1973]. Consider a spherical 
cavity of radius a subjected to a total radial stress art = -an 
and fluid pressure p = p0 on its boundary r = a. If stressing is 
due to pressurizing fluid that fills the cavity, then a• = Po. 
Stress equilibrium requires (in obvious notation) 

egarr/egr + 2(ar• - aoo)/r = 0 (81) 

while the only independent compatibility equation (12) re- 
duces to 

C• [(O. rr + 2frO0) -[" 4r/p] -- Nr -2 (82) 
Or 

If we insist that strains are derivable from a purely radial 
displacement u•, thereby excluding conical dislocations from 
which N derives, we can write e• = •9u/cVr and e00 = u/r and 
deduce (82) with N = 0. Hence 

(ar• + 2aoo) + 4rip = C•(t) (83) 

By using this result in (16), that diffusion process for p sim- 
plifies to 

o'v + _2 ov I ov ac,(t) (84) c[-rr- r = q- n(1 - q- u) dt 
In a manner now familiar, we insert (83) into (81) and in- 
tegrate, subject to ar• (r = a) = -a•, to get 

fief -- •(1 -- aa/ra)C•(t)- anaa/r a 

fa r -- (4n/r a) o2p(o, t) do (85) 

To finish, just as for the cylindrical cavity, (84) subject to 
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boundary conditions must be solved for p (r, t; C•(t)), and then 
the condition on arr at the outer boundary produces, from 
(85), an integral equation for C•(t). 

By specializing to b/a _•oo, we find C•(t) = 0, since the inner 
pressurization will lead to vanishing p, art, and aoo at r = oo. 
Equation (84) then has the simple solution [e.g., Carslaw and 
Jaegar, 1960]: 

p = po(a/r) erfc [(r - a)/(4ct) •/•'1 (86) 

derived with initial condition p (r > a, t = 0 +) = 0, since rn = 
rn0 in (8) and C•(t) = 0 in (83). Equations (85) and (83) now 
give the stresses 

O'rr ---' • o. Raa/t, a 

-- 4•po(a/f) 0 erfc [(0 -- a)/(4ct) •/2] do 

aoo = --«art -- 2•po(a/r) erfc [(r -- a)/(4ct) •/2] 

(87) 

In the region near the wall of the cavity where the applied fluid 
pressure has penetrated (i.e., (r - af' << ct, a/r '-' 1), the pore 
pressure is P0, but the radial total stress is still that applied, so 
we can use (83) to write the whole field: 

P = Po ffrr = - as aoo = as/2- 2r/p0 

and, for the purposes of fracture analysis, (76) gives for this 
region 

arr' = Po -- as aO0' = as/2 + (1 -- 2•)po 

On the other hand, outside the zone affected by boundary pore 
pressure but still at sufficiently short times that such points can 
be close to the wall, the stresses are (p = 0) 

O'rr -- O'rr • -- --O'R 0'00 = aO0' = as/2 

For the case as = P0, the internal pressure required to cause 
fracture will fall by 45% (for r/= 0.30) to 63% (r/= 0.08) when 
sufficient infiltration of fluid occurs to a sufficient depth that a 
fracture of that length can propagate. 

CONCLUDING DISCUSSION 

There were at the outset of this study few significant elastic- 
ity solutions available for the deformation of fluid-infiltrated 
porous solids, especially in the case of fully compressible fluid 
and solid constituents. The present work provides some such 
solutions and may also prove useful, through the formalisms 
developed, in the pursuit of further basic solutions. Indeed, 
there is a wide range of porous media problems involving, e.g., 
constitutive nonlinearities [Biot, 1973; Rice, 1975], local pore 
pressure nonequilibrium [O'Connell and Budiansky, 1974], ani- 
sotropy [Blot, 1955, 1956b], etc., but the simple linear isotropic 
models seem by no means exhausted either as to identification, 
even of primary aspects, of porous media effects or as to 
availability of convenient analytical formulations. 

When inhomogeneities, complex geometries, etc. are consid- 
ered unavoidable, then a numerical approach may be possible. 
For instance, a finite element scheme based on a variational 
principle analogous to that of Biot [1956b] may solve quite 
awkward problems and does not limit one to simplified consti- 
tutive representations. Attempts have been made to implement 
such a method with incompressible constituents [e.g., Val- 
liappan et al., 1973]. But when discontinuities and infinite 
regions are present and one is concerned with isolating dom- 
inant characteristics only, it is preferable to have analytic 

solutions. Thus our dislocation and shear fault solutions 

reveal at least three ways in which pore fluid flow can control 
shear fault motion and give the potential to trace the time- 
dependent progress of frictional faults. The radially symmetric 
solutions in plane strain give new evidence on hydraulic frac- 
turing processes and suggest some simple experiments related 
to conventional annular specimens used in tensile strength 
tests. All solutions can be adapted to complicated loading 
history by a standard superposition integral. 
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