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ABSTRACT
Residual analysis is a useful tool for checking lack of fit and for providing insight into model improvement.
However, literature on residual analysis and the goodness of fit for hidden Markov models (HMMs) is limited.
As HMMs with complex structures are increasingly used to accommodate different types of data, there
is a need for further tools to check the validity of models applied to real world data. We review model
checking methods for HMMs and develop new methods motivated by a particular case study involving a
two-dimensional HMM developed for time series with many null events. We propose new residual analysis
and stochastic reconstruction methods, which are adapted from model checking techniques for point
process models. We apply the new methods to the case study model and discuss their adequacy. We find
that there is not one “best” test for diagnostics but that our new methods have some advantages over
previously developed tools. The importance of multiple tests for complex HMMs is highlighted and we
use the results of our model checking to provide suggestions for possible improvements to the case study
model. Supplementary materials for this article are available online.
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1. Introduction

An important part of any statistical study involving model
development is checking the fit of the model, to assess how
well the model captures the features of the data, and to provide
insight into potential model improvements. However, research
on model checking for HMMs is under developed and there
is a need for new methods. For example, current methods of
model checking, such as the pseudo-residuals described by Zuc-
chini and MacDonald (2009) and the cumulative distribution
function (CDF) plots proposed by Altman (2004), are some-
times insufficient for diagnosing specific problems with model
fit.

In this article, we use the two-dimensional HMM with extra
zeros developed by Wang et al. (2018) as an example to demon-
strate new model checking techniques. The model in Wang et
al. (2018) was developed to classify nonvolcanic tremor in the
Kii and Shikoku regions of Japan into spatiotemporal segments
with distinct features. Wang et al. (2018) undertook a range
of model checking methods to test the validity of individ-
ual assumptions of the model. We look to develop new tools
for checking the fit of HMMs that can help identify possible
improvements to an HMM fitted to a specific dataset by adapting
methods from other classes of models. Specifically, we investi-
gate adapting model checking theory for point process models
developed by Baddeley et al. (2005) and Zhuang (2006). Wang,
Wang, and Zhuang (2018) adapted their methods for point
processes and proposed similar methods for a 2-part autoregres-
sive model. We use this work as a starting point for our new
methods.

CONTACT Jodie Buckby jbuckby@maths.otago.ac.nz Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

The remaining sections of this article are organized as fol-
lows. Section 2 gives an overview of HMMs in general and
details the case study model, a two-dimensional HMM with
extra zeros developed by Wang et al. (2018). Section 3 gives
the details of methods currently used for checking the fit of
HMMs. Section 4 describes some model checking methods for
point processes and time series in general and shows how this
methodology can be adapted for use with HMMs, including
new residual analysis methods and stochastic reconstruction. In
Section 5, we apply the methods to the case study model and
present the results. Our findings are summarized in Section 6
and the adequacy of the methods is discussed.

2. Preliminaries

2.1. Hidden Markov Models

Hidden Markov models (HMMs) were first introduced in the
late 1960s (Baum and Petrie 1966). The models were brought to
further prominence by their application to speech recognition
such as in Rabiner (1989). Since then, this class of models
has been used in many fields of study including bioinformatics
(Krogh, Mian, and Haussler 1994), finance (Hassan and Nath
2005), and seismology (Wang, Bebbington, and Harte 2012;
Wang and Bebbington 2013).

An HMM is used to model time series data when the obser-
vations are dependent on an underlying unobserved Markov
chain. Observations are realized from the m members of a family
of distributions, f (xt|St = i), with i = 1, . . . , m, where xt is the
observed value at time t = 1, . . . , T, St = i is the state of the
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Markov chain at time t and m is the finite number of states. The
simplest first-order HMM satisfies the conditions,

P(St = st|S1 = s1, . . . , St−1 = st−1) = P(St = st|St−1 = st−1)

and

f (xt|x1, . . . , xt−1, S1 = s1, . . . , St = st) = f (xt|St = st).

The parameters to be estimated for an HMM include the
parameters associated with the emission (state dependent) dis-
tribution, in addition to δ and �. The size m vector δ with
elements δi contains the initial probabilities that the first obser-
vation is from each of the states. The matrix � with elements γij
is an m × m matrix of transition probabilities representing the
probability of moving from one state at time t − 1 to another
at time t. Thus, the number of parameters to be estimated in
the model is dependent on the number of states, m. Constraints
applicable to δ and � are such that δi ≥ 0, γij ≥ 0,

∑
i δi = 1,

and
∑

j γij = 1. Estimation of the parameters is achieved by
directly maximizing the likelihood or by using the expectation-
maximization (EM) algorithm (Baum et al. 1970). After param-
eter estimation, the Viterbi algorithm, as proposed by Viterbi
(1967), can be used to obtain the most likely sequence of hidden
states over time given the data and model parameters. This
algorithm maximizes the conditional probability,

P(S1 = s1, . . . , ST = sT |x1, . . . , xT)

= f (x1, . . . , xT , S1 = s1, . . . , ST = sT)∑
s1,...,sT

P(S1 = s1, . . . , ST = sT)f (x1, . . . , xT |S1 = s1, . . . , ST = sT)
.

The obtained state sequence, the Viterbi path, classifies the
observations into m states.

2.2. Motivating Example: Data and Model Description

Our study is motivated by the data and model introduced in
Wang et al. (2018) for spatiotemporal classification of nonvol-
canic tremor activity in the Kii region of Japan. Nonvolcanic
tremor is a chain of low frequency seismic activity originating
in a subduction zone. Tremor was first detected in the Nankai
subduction zone of Japan (Obara 2002). Modeling nonvolcanic
tremor is of interest because tremor activity is associated with
slow slip events (Obara 2011). Data including the presence of
tremor and the location of tremor was collated at hourly inter-
vals using the high-sensitivity seismograph network as referred
to by Maeda and Obara (2009). The nonvolcanic tremor data for
the Kii region of the Nankai Subduction zone consists of 6348
hr when tremor is detected in a total of 105,192 hourly obser-
vations from January 2001 to December 2012. Observations of
detected tremor are clustered in time and space interspersed
with long periods of quiescence. When tremor is detected,
latitude and longitude observations are given. If no tremor is
detected in a given hour, a zero is present in the data.

Previously, classification of tremor data and study of migra-
tion patterns were a manual process. The HMMs developed by
Wang et al. (2017, 2018) provide automation of this process
with quantitative results including distinct one-dimensional or
two-dimensional spatial segments with differing probabilities of
tremor occurrence and transition probabilities between these
segments.

The structure of the model in Wang et al. (2018) is such
that given tremor occurs at time t, the two-dimensional location
observations, Y t , for each state are assumed to follow a bivariate
normal distribution. The HMM accounts for the many null
events with a binary variable. Null events are indicated by Zt = 0
and Zt = 1 otherwise, with pi = P(Zt = 1|St = i) being
the probability of tremor detection in state i. The joint emission
distribution for each state is given below.

f (yt , zt|St = i)

= (1 − pi)
1−zt

(
pi

1
2π |�i|1/2 exp

(
− 1

2
(yt − μi)

T�−1
i (yt − μi)

))zt

,

where μi = E [Y t|Zt = 1, St = i], �i = cov [Y t|Zt = 1, St = i].
Hidden states, St , are assumed to form a first-order stationary
Markov chain, that is, τ� = τ , where τ is the stationary
probability distribution.

The model was fitted using the EM algorithm for different
numbers of states m. The Bayesian information criterion (BIC),
(Schwarz 1978) was used to determine the number of states and
a 17 state model was selected for the Kii region (Figure 1). Three
different types of tremor segments are suggested by the model:
episodic, weak concentration, and background. The model indi-
cates 15 spatially distinct episodic and weak concentration seg-
ments and two background states, with the system spending
most time in the background state 16, in which the proportion
of tremor occurrence is about 0.002. The remaining background
state (state 17) features weak sporadic tremor over the center and
east of the region.

Although the 17 state model for the Kii region is considered
the best from those fitted, we are interested in (1) whether this
model is actually a good fit for the data, (2) whether current
model checking techniques are sufficient, and (3) how to evalu-
ate whether the assumptions of each component of the model
are met. This information will provide insight into how the
model can be improved and/or extended in future research.

3. Current Model Checking Methods for HMMs

The pseudo-residuals defined by Zucchini and MacDonald
(2009) are often used to check the fit of HMMs and are seen
as an alternative to the usual residual analysis used in regression
models. In brief, the ordinary pseudo-residuals are defined as
the exvisible CDF, that is, F(xt|x1, . . . , xt−1, xt+1, . . . , xT). As
such, they take account of the model structure and the other data
to identify extreme values, and a model with good fit should see
a standard uniform distribution of these pseudo-residuals, or a
standard normal distribution when transformed. Zucchini and
MacDonald (2009) gave a full account of the theory behind these
pseudo-residuals. However, it can be more difficult to identify
good fit with pseudo-residuals when there are many discrete
observations at the boundary of the sample space (Harte 2017),
or when the model has a Bernoulli variable as part of the emis-
sion distribution. The ordinary pseudo-residuals for discrete
observations must be defined as either intervals [uL

t , uU
t ] where

the superscripts L and U represent the lower and upper limits for
the interval, or as mid-points of these intervals. In our case study
model, it is more difficult to identify good fit using pseudo-
residuals because of the nature of the emission distribution, a
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Figure 1. The fitted two-dimensional 17 state model for nonvolcanic tremor in the Kii region of south-west Japan. Observations are classified into different spatiotemporal
states represented by different colors. Each state has a unique probability of tremor detection.

mixture of a discrete Bernoulli variable accounting for many
null events and a continuous bivariate normal distribution.

Altman (2004) proposed an alternative method of model
checking for HMMs and demonstrated that the difference
between the empirical CDF and the estimated CDF of a station-
ary HMM should be small everywhere if the fit is good. This
method can easily be extended to HMMs with more complex
state-dependent emission distributions as long as the CDF is
tractable, but only allows assessment of the fit of the marginal
distribution of the observations, giving no information about
the dependence structure. To further investigate the correlation
structure of the fitted model, Altman (2004) described plotting
higher dimensional CDFs of consecutive observations. Usually,
the bivariate distribution is sufficient. These plots, like the uni-
variate case, indicate good fit if they converge to the 45◦ line as
the sample size increases. We note that one pitfall of using tests
based on the CDF is that a lack of fit can remain undetected
when a higher than expected empirical CDF value is followed
by an interval with lower than expected values.

Beyond pseudo-residuals and CDF plots, there are few
detailed methods for testing the fit of HMMs in general,
although some authors have developed methods for their spe-
cific models. Titman and Sharples (2007) discussed misclassifi-
cation models in health services. They compared the observed
and expected number of state transitions as in the Aguirre-
Hernandez and Farewell (AH/F) test (Aguirre-Hernández and
Farewell 2002), which they adapted to accommodate cases
where the misclassification model includes an absorbing state.
Ailliot, Thompson, and Thomson (2009) assessed their pro-
posed HMMs for precipitation by comparing simulated data
from the HMMs with rainfall patterns using Q-Q plots. The
capability of the model to replicate correlation between different
locations was also assessed by comparing the estimated correla-
tion to the correlation in the data. Wang et al. (2017) introduced

an HMM with Bernoulli-normal mixture emission distributions
and took the approach suggested by Yang and Simpson (2010),
who studied the diagnostics of zero-inflated models by testing
different elements of a mixture distribution separately. However,
in the context of an HMM, many of the methods are conditional
on the estimated Viterbi path which adds further uncertainty.

In the following section, we look more closely at methods that
are conditional on the Viterbi path relevant to our motivating
example.

3.1. Methods Based on the Viterbi Path

Some simple model checking methods assume that the esti-
mated Viterbi path is the true sequence of states, and then test
the assumptions of the emission distributions. Wang et al. (2017)
used this approach to test each element of the mixture emission
distribution of their HMM after they obtained the Viterbi path
from the data. This HMM is the one-dimensional version of
the model in our motivating example and was used to study
tremor migration in another region. The emission distribution
in each state is a mixture of Bernoulli and normal distributions.
A significant discrepancy from the assumption of a Bernoulli
distribution with constant probability of event occurrence in
each state, or from the assumption of a conditional normal
distribution, might suggest that some important features of the
observed processes are not accounted for in the model and
perhaps further improvement of the model is required.

Wang et al. (2017, 2018) used an empirical method for
checking the stationarity of the Bernoulli distribution. They
split the entire sequence into equal time intervals and calcu-
lated the empirical proportion of tremor occurrence in each
state (according to the Viterbi path) for each time period along
with confidence intervals. This empirical proportion was then
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compared with the estimated proportion in each state from the
HMM to identify lack of fit.

Additionally, if the emission distribution given that the
observation is not a structural zero is assumed to follow a nor-
mal or multivariate normal distribution, this fit can be assessed
using presence residuals, defined as the standardized residuals
of the observations excluding structural zeros, given the Viterbi
path (Wang et al. 2017). For a multivariate normal, the standard-
ized presence residual vector, rt , for time t when an event occurs,
is of the form,

rt = |�ŝt |−1/2(yt − μŝt ), (1)

where yt is the multivariate observation given that an event
occurs, μŝt is the expectation of yt given the estimated state,
ŝt , from the Viterbi path and event occurrence, and �ŝt is the
corresponding covariance matrix. We expect these residuals
to have a multivariate normal distribution. We will illustrate
the Viterbi path based methods using the case study model in
Section 5.

4. New HMM Model Checking Methods

Various residual analysis techniques have been developed for
point processes, including (1) a transformation based method
(Ogata 1988), which transforms an observed point process
into a standard Poisson process, (2) innovation based meth-
ods (Baddeley et al. 2005; Zhuang 2006, 2015), which com-
pare an innovation process created from the observation to its
conditional expectation, (3) thinning/complementation based
methods (Schoenberg 2003; Clements, Schoenberg, and Veen
2012), which generate a Poisson process by removing some
data from the observed point process or adding extra points
to the observed point process according to some probability
rules determined by the model, and (4) Voronoi residuals (Bray
and Schoenberg 2013; Bray et al. 2014), where each Voronoi
cell contains one observed event and also one expected event,
given the model, if the fit is ideal. Among these residuals, the
innovation based methods can be naturally extended to HMMs.
Before demonstrating this, we briefly introduce the innovation
based residual analysis for point processes.

Point processes model the intensity of events, often in the
context of temporal or spatiotemporal data. Most point pro-
cess models are specified using one of the following forms:
moment intensity, conditional intensity or Papangelou intensity.
For a one-dimensional (temporal) point process N, the moment
intensity ν(t) is defined by,

ν(t) dt = E [N ([t, t + dt))] ,

where N([t, t + dt)) is the number of events occurring in [t, t +
dt). For an HMM, the pdf of the distribution for observation xt
at any time t, without knowing any information is,

m∑
i=1

τi f (xt|St = i)

with τi being the ith element of the stationary probability dis-
tribution of the Markov chain. It is natural to see that this is an
analogue of the moment intensity of a point process.

The conditional intensity of the temporal point process is
informed by the history of the process and defined as,

λ(t) dt = E [N ([t, t + dt)) | Ht] ,

where Ht represents knowledge of N up to time t but not
including t. Finally, the Papangelou intensity is calculated as,

λp(t) dt = E
[
N ([t − dt/2, t + dt/2]) | I[t−dt/2,t+dt/2]

]
,

where I[t−dt/2,t+dt/2] represents information of N everywhere
except the time interval [t − dt/2, t + dt/2]. The studies of
Baddeley et al. (2005) and Zhuang (2006, 2015) developed resid-
ual analysis for point process models that take account of our
knowledge of the process by using the conditional intensity or
the Papangelou intensity. In this study, we introduce this kind of
residual analysis into the literature of HMMs.

For a temporal point process N with conditional intensity
λ(t), the following property holds: for any regular set B (count-
able union of intervals) and a nonnegative predictable function
h(t),

E

⎡
⎣ ∑

ti∈N∩B
h(ti)

⎤
⎦ = E

[∫
B

h(t) λ(t) dt
]

since ∑
ti∈N∩[0,t]

h(ti) −
∫

[0,t]
h(t) λ(t) dt

is a zero-mean martingale. Here, loosely speaking, the pre-
dictable function h(t) acts as a weight and is a stochastic func-
tion determined only by previous data of the point process
before time t. Thus, for any estimates λ̂(t) of λ(t), the predictive
residual is defined by

R(B, ĥ, λ̂) =
∑

ti∈N∩B
ĥ(ti) −

∫
B

ĥ(t) λ̂(t) dt,

where ˆ is also put on h(t) for the case that h also includes
estimated parameters. Similarly, by using the Georgii–Zessin–
Nguyen formula, as referred to in Baddeley et al. (2005) and
Zhuang (2015), the residual with respect to the Papangelou
intensity, namely the exvisive residual, is defined by

R(B, ĥ, λ̂p) =
∑

ti∈N∩B
ĥ(ti) −

∫
B

ĥ(t) λ̂p(t) dt,

where h(t) is an exvisible function, that is, a function deter-
mined by the occurrence pattern of N throughout time, except
at time t (Baddeley et al. 2005). If the fitted model is a good
approximation of the true model, then R(B, ĥ, λ̂) ≈ 0 or
R(B, ĥ, λ̂p) ≈ 0. The forms of h(t) can be chosen according to
the type of residual required. For raw residuals, h(t) = 1.

Adapting concepts from Zhuang (2006) for point processes,
Wang, Wang, and Zhuang (2018) developed residuals for zero-
inflated autoregressive time series models. For a time series Xt ,
these are calculated as,

R(n) =
n∑

t=1

(
ĥ(t)Xt − ĥ(t) E [Xt|Ht]

)
,
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where Ht represents the history X1, . . . , Xt−1. In this case, we
have discrete time t and,

E

[ n∑
t=1

ĥ(t)Xt

]
= E

[ n∑
t=1

ĥ(t) E [Xt|Ht]

]
.

The process,

D(n) =
n∑

t=1
h(t)Xt −

n∑
t=1

h(t) E [Xt|Ht]

is a zero-mean martingale because,

E [D(n) − D(n − 1)|Hn]
= E [h(n)Xn − h(n) E [Xn|Hn] |Hn] = 0.

A good fit implies that R(n) ≈ D(n), that is, close to 0. Moreover,
the asymptotic normality of D(n) is asserted by the central limit
theorem for martingales (Hall and Heyde 2014). The goodness
of fit can thus be assessed by comparing the distribution of R(n)

to the asymptotic distribution of D(n) when n is sufficiently
large.

In the following subsection, we extend the predictive and
exvisive residuals to HMMs.

4.1. Predictive Residuals

Here, we adapt the residuals developed by Baddeley et al. (2005)
and Zhuang (2006, 2015) for use with HMMs. For the HMM,
time t is discrete and we must consider all possible states that
the system could be in at time t.

First, we consider the predictive residuals. These correspond
to the conditional intensity of a point process model, that is, the
expectation of the occurrence of an event in unit time given the
history. In an HMM, the expectation of Xt , given the previous
observations is,

E [Xt|Ht] = E [Xt|X1, . . . , Xt−1] =
m∑

i=1

αt−1 �,i E [Xt|St = i]
αt−1 1′ ,

where αt−1 is the forward probability with the jth element,

αt−1(j) = P(X1, . . . , Xt−1, St−1 = j).

Details for calculating forward and backward probabilities
within the EM algorithm can be found in Zucchini and Mac-
Donald (2009).

Using the expectation calculated above, the raw predictive
residual with h(t) = 1 becomes,

Rp
n =

n∑
t=1

(Xt − E [Xt|Ht]) ,

where the parameters are those estimated from the data.
Where appropriate, other functions h(t) might be introduced,
as described in Section 4 for point process residual analysis. The
standardized residuals for n = 2, . . . , T are calculated as,

R̄p
n = Rp

n√∑n
t=1(Rp

t − Rp
t−1)

2
, (2)

where
√∑n

t=1(Rp
t − Rp

t−1)
2 is the standard deviation of Rp

n, as
defined in Wang, Wang, and Zhuang (2018) and Rp

0 = 0.
Although R̄p

n for n = 2, . . . , T are not iid, we expect to see R̄p
n

fall within the 95% confidence interval of a standard normal
distribution if the fitted model is close to the true model as
R̄p

n ∼ N(0, 1) for each large enough n (Hall and Heyde 2014).
The lower and upper bounds of the 95% confidence interval are
calculated as 	−1(0.025) and 	−1(0.975), respectively, where
	−1 is the inverse standard normal CDF.

Furthermore, we calculate standardized raw residuals R̄p
k,L for

fixed intervals of observations, where k = 1, . . . , K and L is the
interval size. As such,

Rp
k,L =

Lk+L∑
t=Lk+1

(Xt − E [Xt|Ht]) (3)

and

R̄p
k,L = Rp

k,L√∑Lk+L
t=Lk+1

(
Rp

t − Rp
t−1

)2
. (4)

Now, R̄p
k,L can be considered iid for k = 1, . . . , K and goodness

of fit can be assessed by comparing the distribution of R̄p
k,L to

the standard normal distribution. We note that this technique
requires a relatively long time series where K is a large enough
sample size for comparison to a standard normal distribution
and the interval L is sufficiently large to assume normality.

We demonstrate the use of raw predictive residuals using
10,000 simulated data points from a 7 state normal HMM. The
data are simulated using R (R Core Team 2018) and the “Hid-
denMarkov” package (Harte 2017). The plot of R̄p

n against time
in Figure 2 indicates reasonable fit, as expected with simulated
data. We see that the variation of R̄p

n is larger for small n than for
large n as the estimation of the variance in Equation (4) is not
stable when we have few time points.

In addition, the histogram of R̄p
k,L where K = 99 and L =

100 (Figure 3) shows that these interval residuals are close to
a standard normal distribution. A Kolmogorov–Smirnov test
provides no evidence to suggest that the interval residuals devi-
ate significantly from a standard normal distribution, with p =
0.43.

4.2. Exvisive Residuals

We determine raw exvisive residuals in a similar way to the
predictive residuals, the difference being that we consider the
expectation of Xt given all of the other observations rather than
just observations prior to time t. In this case, we have

E [Xt|E t] = E [Xt|X1, . . . , Xt−1, Xt+1, . . . , XT]

=
m∑

i=1

αt−1 �,i βt(i) E [Xt|St = i]∑m
j=1 αt−1 �,j βt(j)

,

where βt(i) = P(Xt+1, . . . , XT | St = i) is the backward
probability. The raw exvisive residual becomes,

Re
n =

n∑
t=1

(Xt − E [Xt|E t]) ,
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Figure 2. The standardized raw predictive residuals over time for simulated data from a 7 state normal HMM. Dashed lines indicate 95% confidence interval.

Figure 3. The standardized raw interval predictive residuals for simulated data from
a 7 state normal HMM. Solid line indicates standard normal distribution.

where the parameters are those estimated from the data. To
standardize these, we divide by the standard deviation of Re

n.
Although the central limit theorem for martingales is not appli-
cable for exvisive residuals due to dependence of the increments
Xt − E [Xt|E t], we can appeal to the central limit theorem more
generally and simply include the dependence in our calculation
of the standard deviation such that,

R̄e
n = Re

n√∑n
t=1(Re

t − Re
t−1)

2 + 2
∑

i�=j((Re
i − Re

i−1)(Re
j − Re

j−1))
. (5)

In practice, the dependence after a lag time of 2 or more
(i.e., Xt − E[Xt|E t] and Xt−h − E[Xt−h|E t−h] with h ≥ 2) is

usually negligible. We should note that the moment estimators
of the covariance terms can be biased, potentially leading to
some variance estimates for the denominator in Equation (5)
< 0.

Again, we expect R̄e
n for n = 2, . . . , T to fall in the 95%

confidence interval of a standard normal distribution but R̄e
n are

not iid. We create iid exvisive interval residuals, Re
k,L using the

same methods described for the predictive residuals.

Re
k,L =

Lk+L∑
t=Lk+1

(Xt − E [Xt|E t]) (6)

and

Re
k,L = Re

k,L√
Lk+L∑

t=Lk+1

(
Re

t − Re
t−1

)2 + 2
∑

i�=j

(
(Re

i − Re
i−1)(Re

j − Re
j−1)

) .

(7)

Now, goodness of fit is assessed by comparing the distribu-
tion of Re

k,L to the standard normal distribution.
In Figure 4, we plot the standardized exvisive residuals using

the same simulated data and parameters from the 7 state normal
HMM. The residuals fall within the standard normal confidence
interval, indicating good fit.

The histogram of Re
k,L where K = 99 and L = 100 (Fig-

ure 5) shows that these interval residuals are reasonably close
to a standard normal distribution, again indicating adequate fit.
Again, the Kolmogorov–Smirnov test suggests that the interval
residuals do not deviate significantly from a standard normal
distribution with p = 0.90.

Figure 4. The standardized raw exvisive residuals over time for simulated data from a 7 state normal HMM. Dashed lines indicate 95% confidence interval.
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Figure 5. The standardized raw interval exvisive residuals for simulated data from
a 7 state normal HMM. Solid line indicates standard normal distribution.

4.3. Stochastic Reconstruction

Here, we adapt the stochastic reconstruction of point processes
(Zhuang, Ogata, and Vere-Jones 2004) for use with HMMs. The
stochastic reconstruction method involves weighting the data by
φit = P(St = i|X1, . . . , XT). The reconstruction for each state i

uses the formula,

f (x|S = i) ∝
T∑

t=1
φitI(xt ∈ (x − �x, x + �x)),

where �x is a fixed arbitrary small increment in the value of
x and I(xt ∈ (x − �x, x + �x)) is an indicator function with
value 1 if xt lies within (x − �x, x + �x). This weighted density
for each state i can be plotted and the expected conditional
density for each state calculated using the estimated parameters
from the model can be overlaid for comparison. We demonstrate
with the simulated data from the 7 state normal HMM used in
Sections 4.1 and 4.2. The weighted density of the observations
and the expected conditional density from the model are plotted
in Figure 6 using the “weights” R package (Pasek 2018). As
expected for simulated data we see good fit of the reconstruction
to the expected densities.

In the case of a zero-inflated HMM where a Bernoulli vari-
able models the presence of a structural zero, stochastic recon-
struction can also be used as an alternative method to estimate
the parameters pi for i = 1, . . . , m, associated with the proba-
bility of a structural zero. We reconstruct pi using,

p̂i =
T∑

t=1
(zt φit)

/ T∑
t=1

φit .

Figure 6. Weighted stochastic reconstruction for each state in a 7 state normal HMM. Dashed lines indicate expected density.
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This formula can then be adapted to give estimates of pi for
different time periods. We use this to assess the variation of pi
over time. It has the added advantage, compared to the previous
methods of checking the stationarity of the Bernoulli distribu-
tion discussed in Section 3.1, of not being dependent upon the
estimated Viterbi path. We divide the entire time period into C
intervals of equal length r. For each interval c = 1, . . . , C, we
calculate the moving average of p̂i for each state i = 1, . . . , m as
follows. For the first time interval, when c = 1, the estimate p̂ic
is,

p̂i1 =
∑r

t=1 zt φit∑r
t=1 φit

(8)

and for each subsequent value of p̂ic for c = 2, . . . , C using a
time interval shifted forward a period q,

p̂ic =
∑q(c−1)+r

t=q(c−1)+1 zt φit∑q(c−1)+r
t=q(c−1)+1 φit

, (9)

where q < r and q is sufficiently large for each interval to include
all states.

5. Application to the Two-Dimensional HMM With
Extra Zeros

5.1. Viterbi Path Based Methods

5.1.1. Bernoulli Distribution Diagnostics
In our motivating example, evidence of non-stationarity and
underestimation of some parameters pi was found by Wang et
al. (2018). We investigate this underestimation further, looking
at each state. Figure 7 shows systematic bias in our model with
the expected number of tremors, assuming that the Viterbi path
is the true sequence of states, lower than the observed number
of tremors in each state. States 3 and 15 show particularly
poor fit with both p̂3 and p̂15 values far from the confidence
interval for p̄3 and p̄15 and vice versa, where p̄i is the observed
proportion of tremors in each state i given the Viterbi path.
The results for states 1–2, 4–5, and 9 also suggest inadequate
fit of p̂i in the 17 state model. Summing over all the states
in the model, the expected number of tremors given that the
Viterbi path is true is 11.33% lower than the observed number of
tremors.

The underestimation of pi is likely due to the model assump-
tion that P(Zt = 1|St = i) is constant over time. The estimator
used for pi is unbiased when P(Zt = 1|St = i) is indeed
constant, but bias is introduced if this assumption does not hold.
Evidence from Wang et al. (2018) suggests that P(Zt = 1|St = i)
is a nonstationary process and supports the concept of a model
in which pi is allowed to vary over time.

5.1.2. Distribution of Presence Residuals
Here, we calculate the standardized presence residuals for our
case study model. The conditional distribution of the two-
dimensional tremor location given that tremor is detected and
the state is known, f (yt|St = i, Zt = 1), is assumed to be
bivariate normal. As such, we use Equation (1) to determine the
presence residuals and these are expected to follow a bivariate
normal distribution if the model is a good fit to the data. In

addition, if sample sizes are large enough we can examine the
presence residuals for each state separately for diagnostic pur-
poses. There are many methods for testing bivariate normality,
but here we focus on graphical methods as a tool for diagnostics.
We use contour plots from the R-package “MVN” authored
by Korkmaz, Goksuluk, and Zararsiz (2016). These plots show
the empirical distributions of the residuals in each state, and
are helpful in identifying unexpected features in the distri-
butions that will then inform potential improvements for the
model.

The standardized presence residuals for the case study model
produce insightful results with clear evidence of bi-modality in
the distributions of presence residuals for a number of states,
particularly states 1, 2, 4, and 5. The contour plots for these
states are shown in Figure 8 with plots for all individual states
in a supplementary file. Additionally, we see clusters of outliers
in many states, for example, in state 4. Some clustering of
outliers is expected due to the migration of tremors through
a segment, which is not accounted for in the model, and
some outliers may occur due to misclassification in the Viterbi
path. However, clear bi-modality indicates that there may be
more than one process occurring within a state. In state 5, for
example, one process involves migration of tremor between
states 4 and 5 with the other due to migration to and from
state 6.

5.2. Predictive Residuals

Presence residuals are calculated for times when a tremor
occurs, which is a mere 6% of the data in the case study example,
and are dependent on the estimated Viterbi path. In contrast,
predictive residuals are calculated for all of the data and con-
sider all possible state occupations. We calculate the marginal
univariate standardized raw predictive residuals for the case
study model using the methods described in Section 4.1. Here,
X(1)

t is a mixed variable of zeros for null events and present
latitudinal observations, Y(1)

t , and X(2)
t is a mixed variable of

zeros and present longitudinal observations, Y(2)
t . The residuals

are plotted against time in Figure 9. The expectations of X(1)
t and

X(2)
t given the previous observations are,

E
[

X(1)
t |Ht

]
=

m∑
i=1

αt−1 �,i pi μ
(1)
i

αt−1 1′

and

E
[

X(2)
t |Ht

]
=

m∑
i=1

αt−1 �,i pi μ
(2)
i

αt−1 1′ ,

where the jth element of αt−1 is,

αt−1(j) = P(Y1, . . . , Y t−1, Z1, . . . , Zt−1, St−1 = j).

and μ
(1)
i = E

[
Y(1)

t |St = i, Zt = 1
]

and μ
(2)
i =

E
[

Y(2)
t |St = i, Zt = 1

]
. The raw predictive residuals are,

Rp(1)
n =

n∑
t=1

(
X(1)

t − E
[

X(1)
t |Ht

])



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 867

Figure 7. (a) The expected number of detected tremors for each state given the Viterbi path (squares), compared to the empirical number classified by the Viterbi path
(circles). (b) Plot of p̂i with 95% confidence interval for empirical p̄i . (c) Plot of p̄i with the 95% bootstrap confidence interval for p̂i .

and

Rp(2)
n =

n∑
t=1

(
X(2)

t − E
[

X(2)
t |Ht

])
,

where E
[

X(1)
t |Ht

]
and E

[
X(2)

t |Ht
]

are calculated at parameter
estimates. The standardized predictive residual is as defined in
Equation (2).

Figure 9 shows that the standardized residuals are quite
stable after a brief run-in period and there is evidence of a
lack of fit with remaining residuals significantly greater than
zero. This is likely due, at least in part, to inaccuracy of esti-
mates p̂i and future modeling should consider allowing pi to
vary over time to improve fit. The residuals for X(1)

t and X(2)
t

have similar values due to the high proportion of zeros in the
data.

In addition, we calculate, R̄p(1)

k,L and R̄p(2)

k,L as shown in
Equations (3) and (4). Figure 10 shows histograms of R̄p(1)

k,L
and R̄p(2)

k,L and we can see that there is greater variance than
expected in these residuals, indicating a lack of fit. The
Kolmogorov–Smirnov test indicates that the interval residu-
als for X(1)

t and X(2)
t deviate significantly from a standard

normal distribution with p = 0.0055 and p = 0.0067,
respectively.

5.3. Exvisive Residuals

An alternative to predictive residuals is the use of exvisive resid-
uals. Here,

E
[

X(1)
t |E t

]
=

m∑
i=1

αt−1 �,i βt(i) pi μ
(1)
i∑m

j=1 αt−1 �,j βt(j)

and

E
[

X(2)
t |E t

]
=

m∑
i=1

αt−1 �,i βt(i) pi μ
(2)
i∑m

j=1 αt−1 �,j βt(j)

with βt(i) = P(Y t+1, . . . , YT , Zt+1, . . . , ZT | St = i). The raw
exvisive residuals are,

Re(1)
n =

n∑
t=1

(
X(1)

t − E
[

X(1)
t |E t

])

and

Re(2)
n =

n∑
t=1

(
X(2)

t − E
[

X(2)
t |E t

])
,

where E
[

X(1)
t |E t

]
and E

[
X(2)

t |E t
]

are calculated at parame-
ter estimates. These are standardized using Equation (5). The
marginal standardized exvisive residuals are plotted in Fig-
ure 11. We see some lack of fit with residuals larger than
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Figure 8. Contour plots of standardized presence residuals for states 1–2 and 4–5 of the case study model.

Figure 9. The marginal standardized predictive residuals plotted for X(1)
t (left) and X(2)

t (right) over time with 95% standard normal confidence interval (dashed lines).

expected. The results indicate that when we take account of all of
the other data rather than the history alone the overall fit of the
model is improved. This might be expected if our assumption of
stationary pi is flawed.

Again, we calculate, R̄e(1)

k,L and R̄e(2)

k,L as shown in Equations (6)
and (7). Figure 12 shows histograms of R̄e(1)

k,L and R̄e(2)

k,L . These
also suggest a better fit than the predictive versions, with the
Kolmogorov–Smirnov tests showing no significant lack of fit
when comparing the distribution of interval residuals for X(1)

t
and X(2)

t to a standard normal distribution (p = 0.18 and
p = 0.19, respectively). However, Figure 13 still shows some
evidence of greater variance than expected in these residuals.

Overall, the residuals suggest that when we take account
of all of the other data in the time series the fit is adequate,
but for predictive purposes the model requires improvement.
Of course, we should note that our univariate residuals do not
take account of the correlation between latitude and longitude
observations.

5.4. Stochastic Reconstruction

As discussed in Section 4.3, the data are weighted by φit =
P(St = i|Y1, . . . , YT , Z1, . . . , ZT) where Y t is the 2D data matrix
for tremor locations at time t and Zt = 1 indicates tremor
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Figure 10. The marginal standardized interval predictive residuals plotted for X(1)
t (left) and X(2)

t (right). Solid line indicates standard normal distribution.

Figure 11. The marginal standardized exvisive residuals plotted for X(1)
t (left) and X(2)

t (right) over time with 95% standard normal confidence interval (dashed lines).

Figure 12. The marginal standardized interval exvisive residuals plotted for X(1)
t (left) and X(2)

t (right). Solid line indicates standard normal distribution.

occurrence. The reconstruction uses the formula,

f (y|S = i) ∝
T∑

t=1
φitI(yt ∈ (y − �y, y + �y))I(zt = 1), (10)

where �y is a fixed arbitrary small increment in the value of y,
I(yt ∈ (y −�y, y +�y)) is an indicator function with value 1 if
yt lies within the rectangle (y − �y, y + �y), and I(zt = 1)

is an indicator function with value 1 if a tremor occurred at
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Figure 13. Heatmap representing stochastic reconstruction of tremor locations for (a) state 1, (b) state 2, (c) state 4, and (d) state 5, with the expected conditional
distribution contours in black. Dark blue indicates high density identified with stochastic reconstruction.

time t. In Figure 13, the weighted densities for states 1, 2, 4,
and 5 are plotted in the form of a two-dimensional heatmap,
using the “plot3D” R package (Soetaert 2017), and the expected
conditional density contours for each state are overlaid using
the estimated parameters from the model. This conditional
density is,

f (yt|St = i, zt = 1)

= 1
2 π |�̂i|1/2

exp
(

−1
2
(yt − μ̂i)

T�̂i
−1

(yt − μ̂i)

)
.

The expected bivariate conditional density contours should
approximately fit the heatmap of weighted latitude and longi-
tude density for each state if the model provides a good fit,
yet the results show multimodal distributions in states 1, 2,
4, and 5 similar to those found using presence residuals. The
remaining stochastic reconstruction heatmaps can be found in
the supplementary file.

Small spikes may occur in the reconstructed distributions
when a cluster of tremors are very close in location. However,
clear bi-modality indicates that our model may be improved by
the addition of extra states. Here, the stochastic reconstruction
identifies the same issues diagnosed by the presence residuals
and this lack of fit might be resolved to some extent by using
alternative model selection methods other than BIC, which is
an unproven criterion in this context.

We also use stochastic reconstruction to calculate moving
average values for the probability of tremor occurrence in each
state, as described in Equations (3) and (4) of Section 4.3. These
moving average values are plotted and compared to the model
estimates of pi when r = 8760 (1 year) and q = 720 (30 days).
The results are shown in Figure 14. It is clear that our assumption
of a stationary probability of tremor in each state across time is
violated in every state except state 3, with the moving average
frequently outside the 95% confidence intervals. This confirms
previous findings of non-stationarity without reliance on the
estimated Viterbi path and gives further weight to the proposal
of a model with varying pi over time.

6. Discussion and Conclusion

In this article, we aimed to develop new model checking meth-
ods for HMMs, particularly for more complex models such
as those with two-part emission distributions. Checking the
performance of a model remains an important step in our data
analysis, not least to direct future model improvements.

We reviewed current methods and developed new predictive
and exvisive residuals for whole model checking of HMMs,
which are based on previous work in point processes. We also
proposed the use of stochastic reconstruction for diagnostics
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Figure 14. Moving average of the probability of tremor occurrence calculated using stochastic reconstruction for (a) state 1, (b) state 2, (c) state 3, (d) state 4, (e) state 5, (f )
state 6, (g) state 7, (h) state 8, (i) state 9, (j) state 10, (k) state 11, (l) state 12, (m) state 13, (n) state 14, (o) state 15, (p) state 16, (q) state 17. Solid lines represent the model
estimates of pi with dashed 95% confidence interval. Values outside the confidence interval indicate nonstationary pi for i = 1, . . . , 17.
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as an alternative to previous methods. Here we discuss the
advantages of our proposed methods.

6.1. Adequacy of Viterbi Path Based Diagnostics

Testing the Bernoulli and bivariate-normal elements of the
emission distributions separately proved informative. Wang et
al. (2018) found that the assumption of a constant probability of
tremor in each state is not reasonable. We also identified a num-
ber of states where pi is significantly underestimated (Figure 7)
in Section 5.1.1. The main disadvantage of these methods is that
they are based on the assumption that the Viterbi path is the true
Markov chain and misclassification errors may lead to problems
with these diagnostics.

The bivariate normal element of the conditional distribution
was assessed through the use of presence residuals. Plotting
the residuals clearly demonstrated bi-modality in residuals for
some states such as 1, 2, 4, and 5 as well as clusters of out-
liers. These results highlight the importance of checking each
state individually rather than relying on the combined presence
residuals for all states. The bi-modal distributions in some states
suggest more than one process occurring within these states.
Wang et al. (2018) selected the two-dimensional model using
BIC and we propose investigating the use of an alternative
criterion. Potentially, this could lead to a better fit for the bivari-
ate normal element of the conditional distribution by splitting
some states further. Again, this method has the disadvantage of
being dependent on the Viterbi path and as such is subject to
misclassification errors.

6.2. Performance of Predictive and Exvisive Residuals

The predictive and exvisive residuals provide a useful whole
model checking tool. They do not rely on the Viterbi path and
as discussed in Section 6.1 methods dependent on the Viterbi
path are unsatisfactory. We also note that our residuals can be
used for stationary and even nonstationary HMMs, whereas
methods such as the CDF plots proposed by Altman (2004) not
only sometimes fail to identify lack of fit, but are only suitable
for stationary HMMs. The new residuals allow our knowledge
of the system to be considered in the same way as pseudo-
residuals do, but as discussed in Section 3 pseudo-residuals
can be difficult to interpret when data contains many zeros.
The predictive and exvisive residuals also have the advantage
that scaling can be used to calculate different types of residuals
through the function h(t), as described in Section 4. We focus
only on h(t) = 1, but Wang, Wang, and Zhuang (2018) used
different forms of h(t) to create Pearson type residuals among
others. In addition, there is the potential to develop second-
order residuals (Zhuang 2006).

The residuals identified a lack of fit in the case study model,
although to a varying degree depending on whether predictive
or exvisive versions were used. This is because the exvisive
residuals are conditional on all of the exterior data rather than
just the historical observations. The lack of fit is due, at least in
part, to the underestimation of pi and the assumption that pi
is stationary, which we can confirm from the stochastic recon-
struction diagnostic tests. As well as identifying a lack of fit, we

can see how the predictive and exvisive residuals change in time
in Figures 10 and 12.

The predictive and exvisive residuals provide a good first step
for whole model checking. However, they are not necessarily
useful for diagnosing specific reasons for lack of fit and as such,
the importance of testing individual features and states of the
model is highlighted.

6.3. Performance of Stochastic Reconstruction

An alternative to Viterbi path based methods for diagnosing
an HMM is stochastic reconstruction. Lack of fit in individual
states can be identified using this method. We found that the
stochastic reconstruction method identified lack of stationarity
in parameters pi and bi-modality of tremor location in some
states. We conclude that the stochastic reconstruction method
is preferable to Viterbi path based diagnostics as the problem of
potential misclassification is avoided. Stochastic reconstruction
takes into account the probability of being in any of the states
at time t. We have found that there is not one “best” test for
goodness of fit for complex HMMs but that a combination of
tests which do not rely on the Viterbi path complement each
other in identifying and diagnosing problems.

6.4. Performance of the Selected HMM for the Kii Region

The development of predictive and exvisive residuals for HMMs
and the use of stochastic reconstruction in this context mark
significant progress for model checking, particularly for two-
part models such as described in the case study.

Our motivation for this article was to determine whether
the selected 17 state two-dimensional HMM with extra zeros
was a good fit for the data. We discovered that estimates of
pi were often significantly lower than the empirical values and
confirmed findings in Wang et al. (2018) that the assumption
of a stationary Bernoulli element of the mixture emission was
violated. Future modeling should take account of this. We found
that some states exhibited a clear bi-modal distribution given
that a tremor occurred. We consider that this might be improved
by using an alternative method of model selection. Use of BIC
is common in the context of selecting the number of states in
an HMM, but its performance is, as yet, unproven (MacKay
2002; Celeux and Durand 2008). Determining the number of
states in an HMM is in fact an unresolved area of research
and considering different model selection methods may lead
to improved fit. The nonvolcanic tremor data are complex and
capturing all features of the data is challenging but this article
has enabled clear insight into the future direction of modeling
this type of data.

6.5. Future Research

A recurring theme throughout the results of our applied model
checking is the lack of fit detected in the Bernoulli element of
the mixture distribution. We will look to develop a model for
nonvolcanic tremor data that allows the value of pi to vary over
time, potentially with the use of splines embedded in the HMM
framework. We will also consider options for model selection
other than BIC, such as some derivatives of AIC (Akaike 1973),



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 873

to see which information criteria select the model that provides
the best fit while still being useful in terms of inference. The
current model is designed to detect large scale migration pat-
terns and we may wish to consider a model which also takes
into account small scale within state migration which currently
causes some correlation in the data. This would require the addi-
tion of a covariate in the model. Also, one may consider the use
of nonparametric estimation methods such as those discussed
in Marsan and Lengliné (2008) and Zhuang and Mateu (2019).

There are still further avenues to be explored for new model
checking methods. Zhuang (2006) and Clements, Schoenberg,
and Veen (2012) discussed the use of second-order statistics
in model checking for point processes to detect clustering or
inhibition. Second-order residuals are calculated by comparing
the variance of the first-order residuals to the expected variance.
It may be possible to develop these methods for HMMs in the
future, as mentioned in Section 6.2.

Supplementary Materials

The supplementary materials include contour plots of standardized pres-
ence residuals and stochastic reconstruction heatmaps for states 3 and 6–17
in the 17 state HMM to complement those in Figures 8 and 13.
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