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Abstract Earthquakes are one of the natural disasters that pose a major threat to human lives and property. Earthquake
prediction propels the construction and development of modern seismology; however, current deterministic earthquake pre-
diction is limited by numerous difficulties. Identifying the temporal and spatial statistical characteristics of earthquake occur-
rences and constructing earthquake risk statistical prediction models have become significant; particularly for evaluating
earthquake risks and addressing seismic planning requirements such as the design of cities and lifeline projects based on the
obtained insight. Since the 21st century, the occurrence of a series of strong earthquakes represented by the Wenchuan M8
earthquake in 2008 in certain low-risk prediction areas has caused seismologists to reflect on traditional seismic hazard
assessment globally. This article briefly reviews the development of statistical seismology, emphatically analyzes the research
results and existing problems of statistical seismology in seismic hazard assessment, and discusses the direction of its devel-
opment. The analysis shows that the seismic hazard assessment based on modern earthquake catalogues in most regions should
be effective. Particularly, the application of seismic hazard assessment based on ETAS (epidemic type aftershock sequence)
should be the easiest and most effective method for the compilation of seismic hazard maps in large urban agglomeration areas
and low seismic hazard areas with thick sedimentary zones.
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1. Introduction

China suffers the greatest damage from earthquakes world-
wide. When accurate earthquake prediction cannot be
achieved, the incorporation of seismic design into urban
building design and lifeline engineering is considered to be
one of the measures for mitigating earthquake disasters. This
is actually the main aspect of earthquake engineering (Hu,
1988). The main role of seismologists is to predict the risk
(probability) of strong earthquakes and calculate or forecast

the strong ground motion produced by strong earthquakes in
certain areas or fault zones (Zhang et al., 2008, 2012; Zhang
et al., 2017b). The aforementioned method of earthquake
prediction differs significantly different from the three-ele-
ment (time, location, and magnitude) prediction of earth-
quakes in the monitored area in this study’s objectives and
methods. The goal is to determine at the design stage how
high the seismic strength of the building should be. This
addresses the probability of the building being subjected to
an earthquake exceeding a certain magnitude during its
service life (usually several decades or a hundred years). We
discuss long-term earthquake prediction or probabilistic
seismic hazard assessment on the scale of decades or a
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hundred years. In contrast with extracting “precursor” phe-
nomena or prediction indicators based on the summary of
earthquake cases (Shi et al., 2001; Chen, 2009; Chen, 2010),
the aforementioned method is based on long-term seismicity
observations in the study area, identified laws of temporal
and spatial evolution, establishment of statistical prediction
models, and calculation of the probability of earthquakes
exceeding a certain magnitude. Considering the stationary
Poisson model, which is widely used in earthquake hazard
assessment (Gao, 2015) as an example, through long-term
seismicity analysis of the study area or fault zone, if the
annual occurrence rate above a certain level is λ, then the
respective probability density function and cumulative
probability distribution function of the waiting time to the
subsequent strong earthquake are expressed as follows:
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The first formula is the probability density function of the
time interval between events of the stationary Poisson model,
and the subsequent formula is the calculation formula for the
probability of strong earthquake occurrence within the time
window τ.
Eq. (1) shows that the probability of a strong earthquake

exceeding a certain magnitude has nothing to do with the
starting time in a given area over the succeeding few decades
(or a hundred years). This earthquake hazard prediction
model is a type of time-independent model of earthquake
hazard prediction. “Time-independent” in this case means
that the calculated probability of a strong earthquake has
nothing to do with the start time.
Since the 21st century, following the rapid economic

growth in countries represented by China, urbanization
worldwide is constantly growing. Meanwhile, the need for
precise earthquake hazard prediction has continually in-
creased. Deterministic earthquake prediction based on phy-
sical models depends on a clear understanding of the
seismogenic process and the ability to express the dynamic
process of the seismic source using stringent mathematical
and physics equations. Additionally, it presupposes that the
“crust imaging” model that monitors the regional structure,
physical properties and states is conditional on the real-time
four-dimensional data of the key precursor and earthquakes
in the study area, and is ultimately accomplished through the
processing of massive data as well as the calculation and
simulation of the earthquake initiation process on the high-
performance computing platform (Shi et al., 2018). How-
ever, the above-mentioned foundations and premises have
not been accomplished so far, and will not be for a long time.
In contrast, the development of the seismology theory has
also promoted the update and development of seismic hazard
assessment methods. Many time-dependent seismic hazard

prediction models that are more reasonable than the sta-
tionary Poisson model have been proposed. This article first
briefly summarizes the development of statistical seismol-
ogy, and then focuses on analyzing the research results and
existing challenges of statistical seismology in seismic ha-
zard prediction. Finally, the development direction of sta-
tistical seismology is discussed in the hope of introducing
new related theories and developments into long-term
earthquake hazard assessment and earthquake engineering
research to promote the rapid development of research in
related fields in China in a new historical stage in the future.

2. Development of statistical seismology and
seismic hazard assessment

Since the establishment of its modern version in the early
20th century, seismology has been closely related to the key
development of statistics. The aim of developing this prac-
tice was to extract useful information from huge amounts of
data. Statistical seismology has now become an important
part of seismology. In 1995, Vere-Jones (2001) taught a
course on a statistical analysis of seismic activity at the
Graduate School of the Chinese Academy of Sciences, and
named it statistical seismology following a suggestion by
academician Shi Yaolin. To date, this subject is an important
branch of seismology, providing the basic theories and
technical mechanism of seismic activity analysis, and com-
bining tectonics/geodynamics and traditional seismology
dominated by seismic waveform analysis.

2.1 Brief introduction and development of typical
earthquake statistical relations

In 1982, John Milne, James Ewing, and Thomas Cray in-
stalled the first modern seismometer in Japan, marking the
beginning of modern seismology (Zhou and Xu, 2018).
Seismometers allowed for the detection of the occurrence of
global earthquakes making it possible to calculate their oc-
currence time and hypocenter locations, and compile rela-
tively complete earthquake catalogs. The main applications
of statistics in earthquake studies during this period are
simple statistical techniques such as linear regression and
point estimation sparsely applied in individual studies on
different topics. Among them, the Omori-Utsu formula and
magnitude-frequency relationship have the greatest influ-
ence and have been used extensively in seismic hazard pre-
diction.
The empirical statistical formula for the magnitude-fre-

quency relationship (also known as the G-R law; Gutenberg
and Richter, 1942) is proposed based on the analysis and
study of the California earthquake catalog by Gutenberg and
Richter in 1942.
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N M Mlog ( ) = a b , (2)

where a and b are constants, and N(M) is the number of
earthquakes whose magnitudes at least equal to M. That is,
the number of earthquakes increases by 10b times when the
magnitude decreasing by one. Usually, the value of b is ap-
proximately 1. In 1945, Gutenberg and Richter proposed the
G-R relationship with an upper truncated magnitude limit.
Later, seismologists from various countries proposed many
empirical scaling laws related to the earthquake magnitude,
in an attempt to solve the discrepancies in low and high
magnitude range to fit the above-mentioned relationship.
Twelve magnitude-frequency relations, which consider
fractal theory, self-organized criticality, statistical physics,
and information entropy, including several nonlinear mag-
nitude-frequency relationships, have been derived from 1971
to 1991 (IASPEI Software, see Utsu and Ogata, 1997).
However, the G-R law expressed in eq. (2) is still the most
recognized and widely used magnitude-frequency scaling
law so far.
For the discrepancy in low-magnitude, when the actual

earthquake catalog is fitted with the Gutenberg-Richter
magnitude-frequency relationship, the usual explanation is
the omission of the low-magnitude detection of the seismic
network. The discrepancy in high-magnitude is well theo-
retically explained by Academician Chen Xiaofei’s research
team in their study of rupture dynamics (Zhang and Chen,
2006; Xu et al., 2015; Zhang et al., 2017a). These studies
report that the magnitude frequency of large earthquakes
with magnitudes exceeding 6.5 is more likely to depend on
the characteristic scale distribution of seismogenic faults in
the source area.
In his study of the aftershocks of the 1891 MS8.0 Nobi

earthquake, Omori (1894) found that the number of after-
shocks occurring each day can be adequately expressed
using the following equation:

n t t( ) = K / ( + c), (3)

where t is the time from the occurrence of the main shock,
and K and c are constants.
After studying the aftershocks of many earthquakes, Utsu

(1961) believed that the decay of aftershock numbers could
occur faster than presented in the Omori formula, and pro-
posed the modified Omori formula:

n t t( ) = K / ( + c) . (4)P

Utsu et al. (1995) successively applied the sum of the
modified Omori formula to express the frequency of se-
quences containing high-order aftershocks. This also in-
dicates that the aftershock sequence is a combination of
aftershock activities caused by the main shock and high-
order aftershock activities caused by strong aftershocks. The
modified Omori formula expressed in eq. (4) plays an im-
portant role in the prediction of aftershocks. Based on the

Omori-Utsu formula, Liu et al. (1979) and Liu and Kong
(1986) suggested the use of the aftershock decay coefficient
h as an index to determine the characteristics of earthquake
sequences for short-term hazard assessment.

2.2 Time-independent model of earthquake hazard
prediction (point process model)

In the 1970s, the introduction of the point process model into
the study of earthquake risk prediction began. This devel-
opment is also required in earthquake engineering. The
building code required that the probability of suffering a
certain peak-ground-acceleration in the coming contain years
be mandatorily considered in the design of building struc-
tures; that is, the probability of a nearby large earthquake at a
certain level. In earthquake engineering, the stationary
Poisson model was often used to estimate the future earth-
quake hazard. In this model, according to the average
earthquake occurrence rate λ in the study area, the probability
of strong earthquakes above a certain magnitude in a given
area over the subsequent few decades (or 100 years) is cal-
culated. The calculation result has nothing to do with the
starting point of the calculation time. This type of earthquake
hazard prediction model is classified under the time-in-
dependent model of earthquake hazard prediction. The
Working Group on California Earthquake Probabilities
(1988) used the concept of a time-dependent model when
estimating the probability of a large earthquake on the San
Andreas fault, which is an update process in mathematics.
Vere-Jones (1970, 1973, 1975) proposed the use of condi-
tional intensity to determine the point process model de-
scribing the occurrence of an earthquake. The definition of
conditional intensity is the expectation of future earthquake
occurrence based on the given observation information
(historical information of earthquake process and/or certain
external observations),

t t
t t t

( ) = lim 1 Pr{earthquake occured in

           [ , + )| past observation}.
(5)t 0

Based on the elastic rebound theory (Reid, 1910) and using
the random point process theory in statistics, Vere-Jones
(1978) proposed a time-dependent earthquake hazard pre-
diction model referred to as the stress release model (SRM).
The basic concept is the assumption that the occurrence rate
of earthquakes in a certain area is related to the stress level in
that area. The stress level in a given area gradually builds up
owing to tectonic movement loads, and decreases suddenly
coinciding with earthquakes. Therefore, the calculation of
the probability of future earthquake occurrence in a given
area should be based on the nonstationary Poisson model,
and the earthquake occurrence rate λ can be expressed as
follows:
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t( ) = e , (6)X t( )

where X(t) is the stress level at time t in a given area, and v is
the correlation coefficient between stress and seismicity. X(t)
can be expressed as follows:
X t X t S t( ) = (0) + ( ), (7)
where X(0) is the initial stress level, ρ is the constant loading
rate, and S(t) is the accumulated stress released from earth-
quakes in period [0, t].
Moreover, Ogata (1988) introduced the idea of the

branching process into the Omori formula, assuming that
each event, regardless of its size, can in principle trigger its
own offspring. This new model is called the epidemic type
aftershock sequence model (ETAS). The temporal condi-
tional intensity of this model is expressed as follows:

t µ t t( ) = + Ke / ( + c) . (8)
i t t

m
i

p

: <i
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The SRM and ETAS have since been expanded and de-
veloped. To address the limitation posed by SRM being only
suitable for single-fault seismic hazard estimation, Liu et al.
(1999a) proposed the coupled stress release model (CSRM),
and Jiang et al. (2011) proposed the multidimensional stress
release model (MSRM). The MSRM has greatly improved
the SRM, making it a spatiotemporal seismic hazard statis-
tical prediction model that can be used in the calculation of
probabilistic seismic hazard in complex structural areas.
Another important development is the incorporation of rate-
and state-dependent friction law into the ETAS model to
explain various phenomena in microseismicity (Stein, 1999;
Dieterich et al., 2000), thus significantly improving the in-
fluence and application of the ETAS model. So far, the SRM
and ETAS models have become the mainstream models used
to estimate long- and short-term seismicity and carry out
seismic hazard prediction. In addition to the traditional time-
independent and time-dependent models (Field et al., 2014,
2015), the third Uniform California earthquake rupture
forecast (UCERF-3) provided by the Working Group on
California Earthquake Probabilities also includes the
UCERF3-ETAS model (Field et al., 2017), which performs
operational earthquake prediction (Jordan and Jones, 2010).
In the global earthquake model project (GEM, https://www.
globalquakemodel.org/) launched in 2006, seismic activity
prediction is regarded as the most important part of the
probability seismic hazard assessment (PSHA). GEM has
also begun to use time-dependent models (Woessner et al.,
2015).
However, for earthquake prediction on time scales of one

year, several months or less (called short-term predictions),
identifying effective earthquake prediction methods is one of
the important topics explored by seismologists (Jia et al.,
2012, 2014, 2018). A newly developed method requires
rigorous statistical tests. Particularly, probability gain has
become the basic measurement standard for comparing the

prediction results of statistical models (Aki, 1981; Feng et
al., 1981; Hamada, 1983; Chen and Ma, 1990). The inter-
national project “collaboratory for study of earthquake pre-
dictability (CSEP)” was set up by the Southern California
Earthquake Center and had started rigorous statistical testing
for submitted earthquake forecasting methods or models.
Japan, Europe, New Zealand, and China also installed their
own CSEP projects, indicating that statistical seismology is
now more widely and significantly applied in earthquake
prediction research.

3. Typical seismic hazard prediction models
considering North China as an example

North China is densely populated, and economically devel-
oped, and has suffered extensive damage from large earth-
quakes. Numerous large earthquakes, including the Xingtai
Earthquake (1966, MS7.2), the Bohai Earthquake (1969,
MS7.4), the Haicheng Earthquake (1975, MS7.3), the Tang-
shan earthquake (1976, MS7.8), the Luanxian earthquake
(1976, M7.1), the Baotou earthquake (1996, M6.4), and the
Zhangbei earthquake (1998, M6.2) have occurred in North
China since the 1960s (Figure 1). These earthquakes resulted
in heavy casualties and large economic losses. Therefore, the
earthquake hazard prediction in North China has always
garnered unique attention from seismologists in China.
Considering North China as an example, we analyzed the
widely used seismic hazard prediction models in succession.

3.1 Identification of potential source area and earth-
quake hazard prediction

The potential source area refers to the fault segment or area
where destructive earthquakes may occur in the future. The
identification of the potential source area includes the range
(boundary) of the potential source area, the direction of
rupture, and the upper limit of the magnitude. The identifi-
cation of the potential source area is based on the compre-
hensive seismic geological survey and historical seismic
data, and mainly based on the following two principles (Gao
and Lu, 2006; Tang et al., 2010):
(1) Earthquake repetition. Large earthquakes may recur in

situ in a certain structural location or section, that is, in a
section or area where strong earthquakes occurred pre-
viously, earthquakes of similar or higher magnitude may
occur in the future.
(2) The analogy of seismic structure. Areas or sections

with seismic structural characteristics that are similar to
those of areas where strong earthquakes have happened may
record earthquakes of the same magnitude. In other words,
by comparing structural conditions that have not yet yielded
large earthquakes with those that have (including ancient
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earthquake relics), we could determine the possibility of an
earthquake of a certain magnitude under certain structural
conditions.
The probabilistic seismic hazard assessment carried out in

Chinese earthquake engineering is mainly adherent to the
method proposed by Cornell (1968) (Gao, 2015). In the PSHA
proposed by Cornell (1968), the basic assumptions of the
seismicity model in the potential source area are as follows.
(1) The seismicity in the same potential source area stabilizes
over time and is uniformly distributed. That is, the occurrence
patterns of earthquakes in the same potential source area ad-
here to a particular stationary Poisson model temporally and
spatially. (2) The magnitude distribution of earthquakes in the
potential source area is adherent to the Gutenberg-Richter
relationship described in eq. (2) (G-R law).
An improved PSHA called the Chinese probabilistic

seismic hazard assessment (CPSHA) has been used in the
compilation of the national seismic zoning map of China in
Chinese earthquake engineering since 1990. The assump-
tions made in the CPSHA method for the seismicity model
are as follows (Gao, 2015):
(1) The magnitude distribution of earthquakes in the

seismic statistical zone satisfies the G-R relationship with an
upper truncated magnitude limit (Xu and Gao, 2012); (2) The
occurrence time of earthquakes in the seismic statistical zone
satisfies the stationary Poisson model; (3) In the seismic
statistical zone, the seismic activity is unevenly distributed
among different potential source areas, but uniformly dis-
tributed in the same potential source area.
CPSHA is based on the above three hypotheses to establish

the corresponding seismic hazard prediction model in each
identified potential source area. The specific method is ex-
haustively described in the “the Publicity Teaching Material
of China Earthquake Parameter Zoning Map (in Chinese)”

edited by Gao (2015).
Although the above-mentioned probabilistic seismic hazard

assessment based on the potential source area has played an
important role in the long-term prediction of strong earth-
quake hazards and the study of earthquake engineering zon-
ing, which is still the mainstream method for the compilation
of seismic zoning maps in China. However, this method used
for more than half a century has recently been questioned
(Stein et al., 2012; Wang, 2012; Wang et al., 2016; Mulargia et
al., 2017), owing to the following main flaws.
(1) The correct identification of the potential source area

and the estimation of the maximum magnitude are important
bases for the effectiveness of the PSHA and CPSHA meth-
ods. However, the identification of the potential source area
based on historical seismic data and the seismic geological
survey of active faults is associated with huge uncertainty
because of the omission of historical seismic data and source
parameters (such as location and magnitude). A seismic
geological survey that is heavily dependent on the empirical
knowledge of the researchers is very subjective. All of these
will inevitably result in the oversight or significant under-
estimation of the seismic hazard of certain potential seismic
source areas. For example, the TangshanM7.8 earthquake in
1976 and the Wenchuan M8.0 earthquake in 2008 acciden-
tally occurred in the low seismic hazard regions and areas
with low seismic fortification intensity, causing heavy ca-
sualties and massive property losses. A typical foreign ex-
ample is the MW6.2 Darfield earthquake near Christchurch,
New Zealand, on September 10, 2010, which also occurred
in low seismic -hazard regions and areas with low seismic
fortification intensity, resulting in the death of 185 people
and an economic loss of 4 trillion New Zealand dollars.
(2) As the recurrence period of strong earthquakes is one

hundred years or even thousands of years, estimating the
average occurrence rate λ of strong earthquakes (the number
of earthquakes above a certain magnitude per unit time)
based on historical seismic data is difficult. Based on the
modern earthquake catalog, using the G-R law to calculate
the average occurrence rate λ of strong earthquakes from that
of small earthquakes is a common solution to this problem.
Nevertheless, the discrepancy in high magnitude range to fit
the G-R law (Xu et al., 2015; Zhang et al., 2017a) causes
large deviations in the calculation of the average occurrence
rate of strong earthquakes from that of small earthquakes,
causing the probability calculation of earthquake hazard
based on the Poisson model Larger uncertainty.
(3) The elastic rebound theory (Reid, 1910) tells us that the

occurrence of an earthquake is the result of the stress accu-
mulation on the fault plane exceeding the rupture strength.
This shows that the occurrence of earthquakes is not entirely
random. Considering the stress accumulation state of the
study area, the time-dependent model may be more opti-
mized than the stationary Poisson model.

42°N

40°N

38°N

36°N

34°N
108°E 110°E 112°E 114°E 116°E 118°E 120°E

Figure 1 Distribution of faults and modern seismic activities in North
China. The purple lines indicate the distribution of faults, the red dots
indicate the location of the earthquake epicenter (from January 1, 1980 to
December 31, 2016, M≥3.0), and the yellow stars represent the main cities
in this area.
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3.2 Probabilistic seismic hazard assessment based on
modern earthquake catalogs

Compared with historical earthquake catalogs or other data,
modern earthquake catalogs can guarantee more reliable,
complete, and sufficient data. Owing to the lack of empirical
identification and setting of potential sources, the probabil-
istic seismic hazard assessment based on modern earthquake
catalogs is simple and yields relatively more objective re-
sults.
The first challenge in seismic hazard estimation is the

establishment of seismicity models. In the long-term seis-
micity models, the stationary Poisson model expressed by
eq. (1) is the most commonly used in the time domain; the
spatial distribution function of earthquakes is usually ob-
tained from the spatial distribution map of earthquakes in the
spatial domain (Ogata et al., 1991; Kagan, 1991; Vere-Jones,
1992; Frankel, 1995; Woo, 1996; Jackson and Kagan, 1999).
Among them, the kernel estimation method has been the
most widely used. Vere-Jones (1992) first applied Gaussian
and IBQ (inverse-biquadratic) kernels to calculate seismi-
city; Frankel (1995) used point sources for seismic hazard
analysis and Gaussian kernels with different bandwidths for
spatial smoothing. Cao et al. (1996), based on Frankel’s
method, simplified the hazard calculation using only his-
torical seismic records, and used a power-law smoothing
function for smoothing. Woo (1996) also used a power-law
smoothing function to calculate seismicity. Jackson and
Kagan (1999) used the bimodal directional kernel function
based on the IBQ kernel to calculate seismicity. These
methods all use a fixed global bandwidth.
In kernel function estimation, if the spatial distribution of

earthquakes in the study area is unevenly distributed, the use
of a fixed global bandwidth to reflect the characteristics of
the entire study area is difficult. A small bandwidth may
produce noise estimates (under-smoothing) in sparse seismic
regions, while a large bandwidth may cause fuzzy estimates
of local seismicity (over-smoothing). To solve this problem,
Stock and Smith (2002), Zhuang et al. (2002), and Jiang et al.
(2011) proposed an adaptive bandwidth kernel estimation
method. The adaptive bandwidth kernel estimation can re-
flect the spatial inhomogeneity of earthquakes better than the
fixed bandwidth kernel estimation, and avoid the over-
smoothing or under-smoothing of regional seismic activity.
In addition to the kernel estimation method, the tessellation

method is also used to calculate the spatial distribution of
seismic activity. For instance, Ogata et al. (2003) used the
Delaunay tessellation based Bayesian smoothing (ODTB)
method to calculate the spatial occurrence rate of earth-
quakes. Because the ODTB method is complex and inclined
to statistical calculation, Xiong et al. (2019) proposed a
simpler incomplete centroidal Voronoi tessellation (ICVT)
method based on space tessellation. In this new method,

Voronoi segmentation (Okabe et al., 1992) is used to grid the
study area, and certain centralization steps are used to reduce
the area difference between adjacent grids. This kind of
cutting is relatively more conducive to reflecting the spatial
distribution characteristics of earthquakes. Considering the
seismicity model in North China as an example, we briefly
introduce the ICVT method.
Voronoi tessellation (also known as Dirichlet tessellation)

was proposed by the Russian mathematician George Fedo-
seevich Voronoi in 1908. Voronoi tessellation managed to
divide the plane into different polygons based on a set of
specific points to ensure each polygon contained only one
specific point and any location in the polygon was in closer
proximity to the specific point than to other points (Tran et
al., 2009). From the epicenter distribution, the entire study
area is divided into the form shown in Figure 2a using
Voronoi tessellation.
In Figure 2a, the data set of the earthquake epicenter lo-

cation is represented by {(xi, yi), i=1,…,N}, where N re-
presents the number of earthquake events. After tessellation,
the earthquake occurrence rate at the epicenter is expressed
as follows:

x y TS( , ) = 1 , (9)i i
i

where T is the time scale of the seismic data set, and Si is the
area of the ith Voronoi polygon. The remaining points in the
area are calculated by triangular linear interpolation.
Therefore, the seismicity rate distribution in the study area
can be obtained as shown in Figure 2b.
Figure 2b depicts the distribution of earthquake hazards

above magnitude 3 in the study area in detail. Based on
Figure 2b, substituting the stationary Poisson model, we can
also use the methods and principles of SHA or CSHA to
further obtain the probabilistic seismic hazard assessment or
ground motion parameter zoning map of the study area.
In fact, only moderate earthquakes (such as magnitude 5)

and above are significantly destructive. In engineering seis-
mology, our concern is the hazard prediction of moderate
earthquakes. Because the higher the magnitude, the fewer the
earthquake records, obtaining the detailed earthquake hazard
prediction map shown in Figure 2b, based on the high-
magnitude earthquake catalog, is difficult. This problem is
usually solved by calculating the b-value spatial distribution
map (Figure 3a) of the study area, and using the G-R law
extrapolation method to obtain the seismic hazard prediction
map of moderate or large earthquakes as Figure 3b (Chen et
al., 1998; Liu et al., 1999b).

3.3 Probabilistic seismic hazard assessment based on
stress release model

Owing to its simplicity and convenience, the stationary
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Poisson model described in eq. (1) is applied in the calcu-
lation of SHA (Cornell, 1968) and CSHA (Gao, 2015) in the
time domain. However, the process of earthquake occurrence
exhibited by the stationary Poisson model differs from the
physical thought of elastic rebound (Reid, 1910), the classic
theory of earthquakes generation. Therefore, many re-
searchers began to find the time-dependent earthquake ha-
zard prediction model. Among these models the SRM
proposed by Vere-Jones (1978) is the most representative.
Vere-Jones (1978) suggested the use of conditional in-

tensity to determine the random point process theory that
describes the process of earthquake occurrence. Based on the
elastic rebound theory, using the random point process the-
ory in statistics, a time-dependent earthquake hazard pre-
diction model, the SRM is proposed. The basic idea is to

assume that the occurrence rate of earthquakes in a certain
area is related to the area’s stress level. The stress level in a
given area gradually builds up due to tectonic movement
loads, and suddenly decreases, thus coinciding with earth-
quakes. Therefore, the calculation of the probability of future
earthquake occurrence in a given area should be based on the
nonstationary Poisson model, and the mathematical expres-
sions are as listed in eqs. (6) and (7) above. To address the
limitation of SRM being only suitable for single-fault seis-
mic hazard estimation, Liu et al. (1999a) proposed CSRM,
and Jiang et al. (2011) proposed MSRM. MSRM has greatly
improved SRM, making it a temporal and spatial seismic
hazard statistical prediction model. The Akaike information
criterion (AIC) statistical test shows that MSRM not only
predicts the more consistent seismic hazard prediction of the

42°N

41°N

40°N

39°N

38°N

37°N

36°N

35°N

34°N

42°N

40°N

38°N

36°N

34°N
108°E 110°E 112°E 114°E 116°E 118°E 120°E 108°E 110°E 112°E 114°E 116°E 118°E 120°E

10−1

10−2

10−3

10−4

(a) (b)
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entire study area in time (Figure 4a) with observations than
SRM or CSRM. More importantly, MSRM can show the
spatial distribution of seismic hazard prediction in the study
area as shown in Figure 4.

3.4 Probabilistic seismic hazard assessment based on
ETAS model

Another important development in the time-dependent
earthquake hazard prediction model is the introduction of the
idea of branching processes into the Omori-Utsu formula
described by Ogata (1988) in eq. (4). It is assumed that each
event, regardless of its size, can in principle trigger its own
offspring. This new model is called the ETAS, and its
mathematical description is as expressed in eq. (8). The
ETAS model has been extensively studied and applied since
it was proposed. In particular, the rate- and state-dependent
friction law have been incorporated into the ETAS model to
explain different phenomena in microseismicity (Stein,
1999; Dieterich et al., 2000; Jia et al., 2018), thus sig-
nificantly improving the influence and application of the
ETAS model. Considering the spatial inhomogeneity of
seismicity, Ogata et al. further proposed a spatiotemporal
ETAS model (Zhuang et al., 2002; Zhuang, 2011). The
mathematical expression of the conditional intensity function
of the spatiotemporal ETAS model is expressed as follows:

( )t x y H

µ x y t x y t x y m

, ,

 = ( , ) + ( , , ; , , , ). (10)
t

i t t
i i i i

: <i

In the above formula, Ht represents the influence of all
historical seismic activities on the earthquake occurrence
rate at the observation point (x, y) at time t in the study area

before time t; μ(x, y) represents the background earthquake
occurrence rate; ξ(t, x, y; ti, xi, yi, mi) represents the con-
tribution of the ith earthquake to the subsequent seismicity,
and its form is expressed as follows:

t x y t x y m
m g t t f x x y y m

( , , ; , , , )
 = ( ) ( ) ( , ; ). (11)

i i i i

i i i i i

Among them, κ(m) represents the number of aftershocks
expected to be triggered by the main shock with magnitude
m, g(t) is the normalized time probability density function,
and f(x, y; m) is the spatial probability density function. The
specific form is expressed as follows (Zhuang and Ogata,
2006):

m A m m( ) = e ,  , (12)m m
c

( )c

g t p
c

t
c t( ) = 1 1 + ,  > 0, (13)

p

f x y m q
D

x y
D( , ; ) = 1

e 1 + +
e , (14)m m m m

q

2 ( )

2 2

2 ( )c c

where parameter A (unit: number of events) represents the
expected number of earthquakes that can be triggered by an
earthquake with an initial magnitude of mc; α indicates the
difference in the triggering abilities of earthquakes of dif-
ferent magnitudes. The difference increases as α increases,
which indicates that additional triggers directly contribute to
large earthquakes; the p parameter represents the decay rate
of aftershocks in time; c (time unit) is inversely proportional
to the occurrence rate of child earthquakes when the parent
occurs; D (length unit) is the spatial distribution range of
earthquakes triggered by an earthquake of initial magnitude
mc, and is inversely proportional to the square root of the
occurrence rate of child earthquakes at the location of the
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parent; γ is the scaling factor for the spatial distribution of
child earthquakes, representing the difference among the
spatial distribution of child earthquakes triggered by parent
earthquakes of different magnitudes; q represents how fast
the aftershock occurrence rate decays in space.
In the calculation, to improve convergence speed, let μ(x,

y)=νu(x, y), so there are 8 parameters θ=(υ, A, α, c, p, D, q, γ)
that require estimation according to the above formula. The
algorithm for solving μ(x, y) and model parameters θ=(υ, A,
α, c, p, D, q, γ) according to the earthquake catalog is re-
ported by Zhuang et al. (2002). The background seismic rate
distribution diagrams obtained by different models are
shown in Figure 5. Declustering is not required when using
the ETAS model to calculate background seismicity, but each
earthquake should be weighted based on the estimated re-
sults of the model.

4. Consequent challenges in probabilistic seis-
mic hazard assessment and solutions

In the above several statistical seismological methods, strong
earthquake hazard prediction is basically based on the ex-
trapolation of the G-R law modeled by a small amount of

seismic data. The discrepancy in high magnitude range to fit
the G-R law may cause deviations in the results. A few
methods such as the SRM (Vere-Jones, 1978), CSRM (Liu et
al., 1999a), and MSRM (Jiang et al., 2011), are modeled
using historical strong earthquake records to obtain strong
earthquake hazard prediction. However, historical data is
limited by having a few samples, omissions, and large errors
in source parameters. To address these problems, seismolo-
gists attempted to establish physical models to carry out
seismic hazard prediction through seismicity simulation
(Rundle, 1988; Robinson and Benites, 1996; Peresan et al.,
2007; Zhou, 2008; Robinson et al., 2011; Jin et al., 2017; Sun
and Luo, 2018; Shi et al., 2018).
The second challenge is probabilistic seismic hazard as-

sessment through physical simulation. Through a physical
model with reasonable structure, we could simulate the
theoretical seismicity in the study area to identify spatio-
temporal evolution characteristics of strong earthquake ac-
tivity and predict regional seismic hazard under the current
tectonic background (Ben-Zion, 1996; Ward, 2000; Zhou et
al., 2006; Rhoades et al., 2011; Jin et al., 2017). However, the
ability of theoretical seismicity to accurately describe the
actual situation of seismicity depends on the precision of the
source numerical model and the closeness of the simulation
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Figure 5 Background seismic rates distribution in North China above magnitude 3 (unit: events year–1 degree–2). The results calculated by (a) the S&SK
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model to the real physical process, for use in seismic en-
gineering research and seismic hazard prediction (Ma and
Wu, 2013; Shi et al., 2013). In recent years, many research
results on large earthquake rupture process and source dy-
namics offered a lot of relevant insight into the seismogenic
mechanism, hindering the generation of a simulation model
to obtain theory seismic activities, which reflects real tec-
tonic activity and seismic activity. At the same time, the
accumulation of observation data from many seismic and
GPS arrays is conducive to obtaining a more refined struc-
ture model of the study area. Shi et al. (2013) summarized the
five key requirements for the numerical prediction of
earthquakes: (1) A clear understanding of the seismogenic
process and ability to quantitatively express this strictly
using mathematical and physics equations; (2) The ability to
solve these equations; (3) The model based on monitoring
the regional structure, physical properties and states in detail,
for a specific forecast; (4) Boundary conditions and their
changes over time; (5) Initial conditions of dynamic equa-
tions. The first two parts will gradually be resolved with the
development of computing technology and seismology, and
the latter three parts can only rely on very dense geophysical
observations (mainly earthquake and deformation observa-
tions). However, even in Parkfield, California, where the
geophysical observations are most dense, the resolution and
accuracy of the regional underground structures obtained
now are far from the requirements of digital earthquake
prediction based on physical models. Academician Shi
Yaolin reported difficulties in addressing the five afore-
mentioned factors to realize numerical earthquake predic-
tion. However, long-term probabilistic seismic hazard
prediction based on existing seismological theories and
simple regional structure model supported by modern ob-
servations is possible. (Shi et al., 2018) Furthermore, the
scale of decades or a hundred years is the concern of earth-
quake engineering, which is the most promising to introduce
numerical simulation to carry out probabilistic seismic ha-
zard prediction based on physical models, to solve the
aforementioned difficulties, particularly, to prevent the de-
viation caused by the extrapolation of G-R law.
Because a more detailed structural model of the study area

is required to build physical model. Despite being based on
the resolution of the existing observations and imaging re-
sults of crustal structure, only a few areas can meet the basic
requirements of the compilation of seismic zoning map of
ground motion. Therefore, the application of potential seis-
mic source zones is a practical and scientific choice for
CSHA in the compilation of seismic zoning map of ground
motion in the Chinese mainland (Gao, 2015). However, since
the determination of potential seismic source area requires
many geological surveys and great experience, detecting
active faults and determining potential seismic source areas
where large urban agglomerations are mostly built with thick

deposits and low seismicity are difficult.
In recent years, according to modern earthquake catalo-

gues, using ETAS models to build probabilistic seismic ha-
zard prediction models has begun to garner attention and
applications in the field of earthquake engineering in Japan,
the United States, Italy, and other countries (Zhuang, 2011;
Ogata, 2011; Werner et al., 2011; Taroni et al., 2018;
Schorlemmer et al., 2018; Fields, 2019). The Working Group
on California Earthquake Probabilities, the National Institute
of Geophysics and Volcanology, and the GEM project have
all began to accept the idea of statistical seismology and a
time-dependent model such as ETAS, which was developed
from statistical seismology, as the basis and tool of prob-
abilistic seismic hazard prediction for testing hypotheses
(Huang et al., 2016). The seismic hazard prediction based on
modern earthquake catalogues is also limited by its need to
extrapolate the seismic hazard of high magnitude according
to the G-R law. According to the latest results of the research
on rupture dynamics of the academician Chen Xiaofei’s re-
search group (Xu et al., 2015; Zhang et al., 2017a), the upper
boundary extrapolated by the G-R law maybe 6.0–6.5, which
means that the seismic hazard prediction map based on cat-
alogues is extrapolated to magnitude 6 with greater relia-
bility. Therefore, the seismic hazard assessment based on
modern earthquake catalogues in most regions should be
effective. Particularly, the application of seismic hazard as-
sessment based on ETAS should be the easiest and most
effective in the compilation of seismic hazard maps in large
urban agglomeration areas and low seismic hazard areas with
thick sedimentary areas.
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