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Summary.This paper proposes the principle of the second-order martingale-based residual analysis for space-time

point processes. In order to illustrate the powers of the first- and second-order residuals, I apply them to the space-time

epidemic-type aftershock sequence (ETAS) model for testing some important and interesting hypotheses associated

with the features of earthquake clusters.

1. Introduction

Temporal and spatio-temporal point-process models have been more and more widely used in modelling the oc-

currences of earthquake events (see, e.g., Console et al., 2003; Console and Murru, 2001; Kagan, 1991; Musmeci

and Vere-Jones, 1992; Ogata, 1998, 2004; Ogata et al., 2003; Ogata and Zhuang, 2005; Rathbun, 1993; Zheng

and Vere-Jones, 1991, 1994; Zhuang et al., 2002, 2004). Among the associated statistical interference techniques,

such as model specification, parameterizations, model selection and testing goodness-of-fit, the tools of testing

goodness-of-fit are quite underdeveloped. This is one motivation for writing this article.

In previous studies, residual analysis has been carried out by transforming the point process into a standard

Poisson process (see, e.g., Ogata, 1988). Schoenberg (2004) uses the thinned residuals to analyze the goodness-of-

fit of a multidimensional point process model to an earthquake dataset. Baddeley (2004) proposes the principles

of first order residual analysis for temporal and spatial point process according to the martingale properties and

the Nguyen-Zessin formula (Nguyen and Zessin, 1979), respectively. In this paper, I will generalize his work to

second-order residual analysis through an overview of his work on temporal point processes.

Among the point-process models, the space-time epidemic type aftershock (ETAS) model is used to describe

the behavior of earthquake clusters (Ogata, 1998; Ogata et al., 2003, 2004; Zhuang et al., 2002, 2004; Console and

Murru, 2001; Console et al., 2003). In this model, the seismicity is classified into two components, the background
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and the cluster. Background seismicity is modelled as a stationary Poisson process but not homogeneous in space.

Once an event occurs, no matter if it is a background event or generated by another event, it produces its own

offspring independently according to some rules. Zhuang et al. (2004) develop a stochastic reconstruction method

based on the ETAS model and use it to test a series of interesting hypotheses associated with the features of

earthquake clusters, which may not be implied by the model. Their method is purely from intuition without any

strict theoretical basis. To provide a theoretical basis for their method is another motivation of writing this article.

In this paper, I first give the space-time analogue of the first-order residual developed by Baddeley (2004),

and then propose the second-order residual. To illustrate how to use the above residuals, I use the epidemic type

aftershock sequence (ETAS) model (Ogata, 1988, 1998) for earthquake occurrences as an example.

2. Point processes and conditional intensities

Consider a space-time point process consisting of event occurring at time {ti} in the interval [0, T ] and at corre-

sponding locations {xi} in a region ⊂ R
d. Assume that the marginal temporal point process is orderly; i.e., the

probability that more than one event occurs in the time interval [t, t+δ) is o(δ) for all t ≥ 0. Such space-time point

processes can be defined through random counting measures N on [0,∞)×X. Here, N(C × B) is the number of

events falling in a region B ∈ X and at times in a set C ∈ T , where X and T are the Borel σ-algebras of subsets

of X and [0,∞), respectively. Let F be the σ-algebra generated by {N((r, t] × B) : B ∈ X , 0 ≤ r ≤ t}, and let Φ

be the collection of counting measures N on X × [0,∞). Then a space-time point process is a measurable mapping

of a probability space (Ω,A, P ) onto (Φ,F).

For any measurable B ∈ X , there exists an F-compensator A(t, B) such that N([0, t) × B) − A(t, B) is an

F-martingale. Let ` and `d denote Lebesgue measure in R and R
d, respectively. Suppose that, for each x ∈ X,

there exists an integrable, non-negative, F-adopted process λ(t, x) such that, with probability 1, for all t ∈ R
+ and

B ∈ X ,

∫

B

∫ t

0

λ(s, x) `(ds) `d(dx) = A(t, B). (1)

The conditions and justification for the existence of such a process can be found, for example, in Vere-Jones and
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Schoenberg (2004). If it exists, λ(t, x) is called an F-conditional intensity, satisfying

∫

B

λ(t, x)`d(dx) = lim
∆t↓0

E[N(t+∆t, B)−N(t, B) | Ft]

∆t
. (2)

3. First order residuals

According to the martingale property of the conditional intensity, for any predictable process (measurable with

respects to the σ-algebra generated by events of the form E × (s, t]×B where E ∈ F and B ∈ X ) h(t, x) ≥ 0, a.e.,

E

[
∫

D

h(t, x)N(dt× dx)

]

= E

[
∫

D

h(t, x)λ(t, x)µ(dt× dx)

]

, (3)

where µ is the Lebesgue measure `× `d, D ∈ T
⊗

X .

Similar to the residuals for spatial point processes proposed by Baddeley (2004), define residuals with respect

to a predictable function h(t, x) ≥ ∞, a.e., and a measurable set D ⊂ T ×X by

R(h,D) =

∫

D

[h(t, x)N(dt× dx)− h(t, x)λ(t, x)µ(dt× dx)] . (4)

It is clear that E[R(h,D)] = 0 (see also, Brémaud, 1981, Chap. 2; Karr, 1991, Chap. 5).

Example 1. Raw residuals. Let h(t, x) = 1, then the corresponding residual is

R(h,D) = N(D)−

∫

D

λ(t, x)µ(dt× dx), (5)

which is called the raw residual. One important property of raw residuals in applications is that, for a realization

of the process, {(ti, xi) : i ∈ N}
{

τi =

∫ ti

0

∫

A∈X

λ(t, x) `d(dx) `(dt)

}

(6)

is a standard Poisson process (Meyer, 1971; Papangelou, 1972; Ogata 1988; Vere-Jones and Schoenberg 2004).

Example 2. Reciprocal-lambda residuals (Baddeley 2004; Schoenberg, 2004) If h(t, x) = 1/λ(t, x),

R(h,D) =

∫

D

N(dt× dx)

λ(t, x)
− µ(D). (7)

This is an analogue of the Stoyan-Grabarnik (1991) weights for Gibbs point processes. The residual analysis on

the space-time ETAS model done by Schoenberg (2004) was essentially using the inverse-lambda residual.
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Example 3. Pearson residuals (Baddeley, 2004). If h(t, x) = 1/
√

λ(t, x),

R(h,D) =

∫

D

N(dt× dx)/
√

λ(t, x)−

∫

D

√

λ(t, x)µ(dt× dx). (8)

Example 4. Score residuals (Baddeley, 2004). The score residual is defined by

R

(

∂ log λ(t, x)

∂θ
,D

)

=

∫

D

∂ log λ(t, x)

∂θ
N(dt× dx)−

∫

D

∂λ(t, x)

∂θ
µ(dt× dx), (9)

where θ is any of the usual parameters in the model.

E

[

R

(

∂ log λ(t, x)

∂θ
, D

)]

= 0

is the condition for maximizing the log-likelihood function in D, i.e.,

logL =

∫

D

log λ(t, x)N(dt× dx)−

∫

D

λ(t, x)µ(dt× dx). (10)

Example 5. Weighted score residuals and localized maximum likelihood estimates The equality associated with

weighted score residuals

E

[

R

(

w(t, x; t0, x0)
∂ log λ(t, x)

∂θ
,D

)]

= 0, (11)

is the condition for maximizing the local log-likelihood

WLL =

∫

D

w(t, x; t0, x0) log λ(t, x)N(dt× dx)−

∫

D

w(t, x; t0, x0)λ(t, x)µ(dt× dx), (12)

where w(t, x; t0, x0) is a kernel function centered at (t0, x0).

4. Second-order residual analysis

A second-order predictable function H(t, x; t′, x′) is a function predictable on Ft
⊗

Ft′ , i.e., measurable on the

σ-algebra generated by the events of the form of (E × (s, t] × B) × (E ′ × (s′, t′] × B′), where E × E′ ∈ Ft
⊗

Ft′ .

It is obvious that each prediction function H(t, x; t′, x′) can be decomposed uniquely as H− +H+ +H0 such that

H−(t, x; t
′, x′) = 0 for t ≥ t′, H+(t, x; t

′, x′) = 0 for t ≤ t′ and H0(t, x; t
′, x′) = 0 for t 6= t′.

If H = H−, then

E

[
∫∫

D

H(t, x; t′, x′)N(dt× dx)N(dt′ × dx′)

]

= E

[
∫∫

D

H(t, x; t′, x′)λ(t, x)λ(t′, x′)µ(dt′ × dx′)µ(dt× dx)

]

(13)
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where D is measurable subset of (T ×X)× (T ×X). To obtain this equality, notice that now H(t, x; t′, x′) = 0 for

t ≥ t′, which yields

I ≡ E

{
∫∫

H(t, x; t′, x′)N(dt× dx)N(dt′ × dx′)

}

= E

{
∫

E

[
∫

H(t, x; t′, x′)N(dt′ × dx′) | Ft

]

N(dt× dx)

}

(14)

Because

J(s) ≡

∫

B
⋂

{t′≤s}

H(t, x; t′, x′) [N(dt′ × dx′)− λ(t′, x′)µ(dt′ × dx′)] (15)

is a martingale of s for any measurable subset B ⊂ T ×X, i.e.,

E [J(s) | Ft] = J(t) = 0 (16)

or,

E

[
∫

H(t, x; t′, x′)N(dt′ × dx′) | Ft

]

= E

[
∫

H(t, x; t′, x′)λ(t′, x′)µ(dt′ × dx′) | Ft

]

, (17)

whose both side are predictable functions with respect to Ft,

I = E

{
∫

E

[
∫

H(t, x; t′, x′)λ(t′, x′)µ(dt′ × dx′) | Ft

]

N(dt× dx)

}

= E

{
∫

E

[
∫

H(t, x; t′, x′)λ(t′, x′)µ(dt′ × dx′) | Ft

]

λ(t, x)µ(dt× dx)

}

. (18)

On the other side,

E

{
∫∫

H(t, x; t′, x′)λ(t′, x′)λ(t, x)µ(dt′ × dx′)µ(dt× dx)

}

= E

{
∫

E

[
∫

H(t, x; t′, x′)λ(t′, x′)µ(dt′ × dx′) | Ft

]

λ(t, x)µ(dt× dx)

}

. (19)

If H = H+, we can get a similar formula as (13). If H = H0, it becomes a predictable function of the first

order. Consider the decomposability of H, it is obvious that

E

[
∫∫

D

H(t, x; t′, x′)N(dt× dx)N(dt′ × dx′)

]

= E

[

∫∫

D\diag(D)×diag(D)

H(t, x; t′, x′)λ(t, x)λ(t′, x′)µ(dt′ × dx′)µ(dt× dx)

]

+ E

[

∫∫

diag(D)

H(t, x; t, x)λ(t, x)µ(dt× dx)

]

(20)
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where D is measurable subset of (T ×X)× (T ×X) and diag(D) = {(t, x) : (t, x; t, x) ∈ D}

The second-order residual with respect to the predictable function H(t, x; t′, x′) for D is

R(H,D) =

∫

D\diag(D)×diag(D)

H(t, x; t′, x′)N(dt′ × dx′)N(dt× dx)

−

∫∫

D\diag(D)×diag(D)

H(t, x; t′, x′)λ(t, x)λ(t′, x′)µ(dt′ × dx′)µ(dt× dx) (21)

Example 6. Poisson processes For a temporal Poisson process of a stationary rate λ,

E

[

∫

[0,T ]×[0,T ]\{t=t′}

N(dt)N(dt′)

]

= λ2 T 2, (22)

which yields an estimate of λ as

λ̂ =

√

n (n− 1)

T
, (23)

where n is the number of events observed in the time interval [0, T ].

To illustrate more on the usages of the above first- and second-order residuals, we use the space-time ETAS

model as an example.

5. Space-time ETAS models

The space-time ETAS model has a conditional intensity taking the form of

λ(t, x, s) = γ(s)

[

u(x) +

∫

D

ξ(t− t′, x− x′ | s′)N(dt′ × dx′ × ds′)

]

(24)

where (t, x, s) represents the occurrence time, location and size (magnitude) of a point in R × X × R
+, u(x) is

background (immigration) rate, D = (−∞, t)×X × R
+,

ξ(t, x | s) = κ(s) g(t) f(x | s), (25)

is the response function, κ(s) is the mean number of offspring (aftershocks) produced by a parent of size s, g and

f are p.d.f.s for occurrence times and locations of offspring, respectively, and γ is p.d.f of sizes for all the events.

In this model, the magnitude component can regarded as a special spatial coordinate in M = R
+.

Given u(x) ∈ L∞(X), i.e., there exists a positive constant C such that |u(x)| < C, a.e., the sufficient and

necessary condition for E[λ(t, x, s)] <∞, a.e., is

∫

M

κ(s) γ(s) `(ds) < 1. (26)
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Proof: Let

K(t, x) =

∫

D

ξ(t− t′, x− x′ | s′)N(dt′ × dx′ × ds′), (27)

then

E [K(t, x)] = E

[
∫

D

ξ(t− t′, x− x′ | s′)λ(t′, x′, s′)µ(dt′ × dx′ × ds′)

]

= E

{
∫

D

ξ(t− t′, x− x′ | s′) γ(s′) [u(x′) +K(t′, x′)]µ(dt′ × dx′ × ds′)

}

, (28)

where

K(t′, x′) =

∫

D′

ξ(t′ − t∗, x′ − x∗ | s∗)N(dt∗ × dx∗ × ds∗), (29)

D′ being (−∞, t′)×X × R
+. Let T be the operator satisfying

(Tv)(t, x) =

∫

D

ξ(t− t′, x− x′ | s′) γ(s′) v(t′, x′)µ(dt′ × dx′ × ds′). (30)

Taking (25) into account, it is easy to prove that T is a linear operator from L∞(X) to L∞(X) and

‖Tn ‖ = ‖T ‖
n
=

[
∫

R+

κ(s) γ(s) `(ds)

]n

, n = 1, 2, · · · . (31)

Equation (28) can rewritten as

E [K(t, x)] = (Tu)(t, x) + E [(TK)(t, x)] , (32)

Substituting (32) into itself,

E [K(t, x)] = (Tu+ T 2u+ · · ·+ Tnu+ · · · )(t, x). (33)

Moreover,

E [λ(t, x, s)] = γ(s)
[

u+ Tu+ T 2u+ · · ·+ Tnu+ · · · )(t, x)
]

(34)

implies that E [λ(t, x, s)] is essentially bounded iff ‖T ‖ < 1 and that E [λ(t, x, s)] = γ(s)m(x) is a function

independent of t, where m(x) = (u+ Tu+ T 2u+ · · ·+ Tnu+ · · · )(x).
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6. Data description, model specification and parameter estimation

Assume that the response functions in (25) take the following forms

κ(s) = A exp[αs]; (35)

γ(s) = β exp[−βs]H(s); (36)

f(x|s) =
q − 1

πDeαs

(

1 +
||x||2

Deαs

)−q

, (37)

and

g(t) =
p− 1

c

(

1 +
t

c

)−p

H(t), p > 1, (38)

where H represents the Heaviside function (Ogata, 1998).

We use the shallow earthquake (with depths less than 100 km) in the Japanese Meteorological Agency (JMA)

catalogue for this analysis (see Figure 1). The time span of this catalogue is 1926/01/01 to 1999/12/31. We select

the data in the polygon with vertices (134.0◦E, 31.9◦N), (137.9◦E, 33.0◦N), (143.1◦E, 33.2◦N), (144.9◦E, 35.2◦N),

(147.8◦E, 41.3◦N), (137.8◦E, 44.2◦N), (137.4◦E, 40.2◦N), (135.1◦E, 38.0◦N) and (130.6◦E, 35.4◦N). The time

period after 10000 days as the target region for estimating the parameters by using MLE.

The parameters and the background of the given ETAS model can be iteratively estimated from the following

procedures (Zhuang et al., 2002, 2004).

(a) Set up the initial background seismicity rate, for example, let û(x) = 1.

(b) Set

λ(t, x, y) = γ(s)

[

C û(x) +
∑

i:ti<t

κ(si) g(t− ti) f(x− xi | si)

]

, (39)

and estimate C and the other model parameters by maximizing the log-likelihood function

logL =
∑

(ti,xi,si)∈D

log λ(ti, xi, si)−

∫∫∫

D

λ(t, x, s) dtdxds, (40)

where D ∈ T
⊗

X is a specified region of interests.

(c) For each event i, set

ϕi = C û(xi) γ(si)/λ(ti, xi, si). (41)
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Fig. 1. Occurrence locations and times of shallow earthquakes in the central Japan area. (a) Epicentral locations. The polygon
represents the target region. (b) Epicentral latitudes against occurrence times. Black and gray circles are target events and
complementary events, respectively. Different sizes of circles show the magnitude of earthquake from 4.2 to 8.1. The polygon
represents the target region.

(d) Get a better estimate of the background rate by using the weighted kernel estimates

û(x) ∝
∑

i

ϕi Z(x− xi, hi) (42)

where Z represent the gaussian kernel function, the bandwidth hi is the distance to the npth closest events

to i or is a threshold bandwidth if that distance is less than the threshold bandwidth.

(e) Replace the background rate by this better one, and return to Step 2 until the results converge.

7. Residuals for the ETAS model and data analysis

Once the conditional intensity function in (24) is estimated, it provides us a good way to evaluate the probability

how an event is likely to be a background event or triggered by others (Kagan and Knoppoff, 1980; Zhuang et al

2002). Consider the contribution of the background seismicity rate relative to total seismicity rate at the occurrence

of the ith event,

ϕi =
u(xi) γ(si)

λ(ti, xi, si)
, (43)

If we remove the ith event with probability 1 − ϕi for all the events in the process, we can realize a process with

the occurrence rate of µ(x)γ(s) (see, e.g., Ogata, 1981; Karr, 1991, Chap. 5 for justification). Thus it is natural to
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regard ϕi as the probability that the ith event is a background events. Similarly,

ρij =
γ(sj) ξ(tj − ti, xj − xi | si)

λ(tj , xj , sj)
(44)

can be regarded as the probability that the jth event is directly produced by the ith event. Based the above ideas,

Zhuang et al. (2004) tested some hypothesis associated with the clustering features of earthquake by building

empirical functions with the events weighted by probabilities ϕi or ρij . This reconstruction method was purely

from intuition. In the coming sections, we show how it works.

For simplification, in the following sections, the notations of the Riemann integral are used, and, without

confusion, the integral region is indicated by an index function in the integrand.

7.1. Testing stationarity of background process

Take h(t, x, s) = u(x)γ(s)/λ(t, x, s), then ϕi = h(ti, xi, si) is the background probability. Define background

residuals by

R(h,B) =
∑

i

ϕi I((ti, xi, si) ∈ B)−

∫∫∫

B

u(x) γ1(s) dtdxds, (45)

where B is a measurable subset of T × X × M . To test the stationarity of the background process, choose

B = (0, t)×Bx ×Bs, Bx ⊂ X and Bs ⊂ S. From E[R(h,B] = 0 (45),

∑

i

ϕi I[(ti, xi, si) ∈ B] ≈ t× constant. (46)

By using the above equation, Zhuang et al. (2005) find that background seismicity become quiescent before

the 1999/9/21 Chi-Chi earthquake (MS7.3) in Taiwan. Hainzl and Ogata (2005) show that, in the analysis of the

earthquake swarm in 2000 in Vogtland/NW Bohemia, centra Europe, the patterns of changes in the background

residuals can be used to identify the pore pressure changes due to fluid intrusion.
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Fig. 2. Cumulative background weights against times in the target region.

7.2. Reconstructing individual functions

Reconstructing the magnitudal distribution Set h(t, x) = I(s ∈ S) where S = [s0 − δ, s0 + δ], δ being a small

number. Then

E

[

∑

i

I(si ∈ S)

]

= E

∫∫∫

I(s ∈ S)λ(t, x, s) dtdxds

=

∫

γ(s) I(s ∈ S) ds×E

[
∫∫

λ(t, x) dtdx

]

≈ 2 γ(s0) δ ×E

[
∫∫

λ(t, x) dtdx

]

, (47)

where λ(t, x) = u(x) +
∑

i: ti<t
ξ(t− ti, x− xi | si). It gives an estimate of γ(s),

γ̂(s) =

∑

i

I(si ∈ [s− δ, s+ δ])

2δ
∑

i

1
. (48)

The denominator in the above equation is used for normalization.

Reconstructing the function of triggering ability Let

H(t, x, s; t′, x′, s′) =
κ(s) g(t′ − t) f(x′ − x | s) γ(s′)

λ(t′, x′, s′)
. (49)
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Then

E

∑

i, j

I(si ∈ S)H(ti, xi, si; tj , xj , sj)

= E

∫∫∫∫∫∫

I(s ∈ S)κ(s) g(t′ − t) f(x′ − x|s) γ(s′)λ(t, x, s) dt′ dx′ ds′ dtdxds

=

∫

κ(s) γ(s) I(s ∈ S) ds×E

[
∫∫

λ(t, x) dtdx

]

≈ 2 δ κ(s0) γ(s0)×E

[
∫∫

λ(t, x) dtdx

]

. (50)

Consider ρij = H(ti, xi, si; tj , xj , sj), we have the following estimator

κ̂(s) =

∑

i, j

ρij I(si ∈ S)

∑

i

I(sj ∈ S)
. (51)

Reconstructing distributions for the occurrence times and locations of direct offspring Similarly,

E





∑

i, j

I(tj − ti ∈ T )H(ti, xi, si; tj , xj , sj)





≈ 2 δ g(u)

∫

κ(s) γ(s) ds×E

[
∫∫

λ(t, x) dtdx

]

(52)

where T = [u− δ, u+ δ], corresponds to the estimate

ĝ(u) =

∑

i, j

ρij I(|tj − ti − u| < δ)

2 δ
∑

i, j

ρij
; (53)

and

E





∑

i, j

I(xj − xi ∈ X)I(si ∈ S)H(ti, xi, si; tj , xj , sj)





≈ 2µ(X) δ f(u | s0)κ(s0)γ(s0)×E

[
∫∫

λ(t, x) dtdx

]

(54)

where X is a small volume around u and S = [s0 − δ, s0 + δ], corresponds to

f̂(u | s) =

∑

i, j

ρij I(xj − xi ∈ X) I(|si − s| < δ)

2µ(X) δ
∑

i, j

ρij I(|si − s| < δ)
. (55)

Example 7. Reconstructing individual functions for the JMA data We apply the above reconstruction proce-

dures to the JMA catalogue and the reconstructed γ(s), κ(s) and g(t) are shown in Figure 7.3. Basically, the

functions that we have chosen in the model formulation are good enough to be used as a first approximation for

describing the clustering features in seismicity.
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7.3. Testing difference between background events and triggered events

The ETAS model assumes that there is no distinction between background events and triggered events. Once an

event occurs, its magnitude is from the common unique magnitudal distribution and it triggers its offspring in the

same manner as others. In this section, we will test whether background events and triggered events are different

in some aspects.

Magnitude difference To test whether background seismicity and triggered seismicity have different magnitudal

distribution is to test the model as in (24) against a more complicated model with a conditional intensity function,

λ1(t, x, s) = u(x) γ0(s) + γ1(s)
∑

ti<t

κ(si) g(t− ti) f(x− xi | si). (56)

Then, for the new model,

E

[

∑

i

u(xi) γ0(si) I(si ∈ S)

λ1(ti, xi, si)

]

=

∫

γ0(s) I(s ∈ S) ds

∫∫

u(x) dtdx

≈ 2 δ γ0(s0)

∫∫

u(x) dtdx (57)

and

E





∑

i, j

I(sj ∈ S)
γ1(sj)κ(si) g(tj − ti) f(xj − xi | si)

λ1(tj , xj , sj)





=

∫

γ1(s
′) I(s′ ∈ S) ds′ ×E

[
∫∫∫

λi(t, x, s) dtdxds

]

≈ 2 δ γ1(s0)×E

[
∫∫∫

λ1(t, x, s) dtdxds

]

. (58)

Take

ϕi ≈
u(xi) γ0(si)

λ1(ti, xi, si)
(59)

and

ρij ≈
γ1(sj)κ(si) g(tj − ti) f(xj − xi | sj)

λ1(tj , xj , sj)
, (60)

γ0(s) and γ1(s) can be reconstructed by

γ̂0(s) =

∑

i

ϕi I(|si − s| < δ)

2 δ
∑

i

ϕi
(61)
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and

γ̂0(s) =

∑

i, j

ρij I(|sj − s| < δ)

2 δ
∑

i, j

ρij
=

∑

i

(1− ϕi) I(|si − s| < δ)

2 δ
∑

i

(1− ϕi)
, (62)

respectively.

Triggering abilities This is to test the model against a more complicated model with a conditional intensity in

the form of

λ1(t, x, s) = λ1(t, x, s, ω) I(ω = 0) + λ1(t, x, s, ω) I(ω = 1), (63)

where

λ1(t, x, s, ω) =







u(x) γ0(s), if ω = 0,

γ1(s)
∑

ti<t
ξ(t, x; ti, xi, si, ωi), if ω = 1.

(64)

and

ξ(t, x; ti, xi, si, ωi) =

{

κ0(si) g0(t− ti) f0(x− xi | si), if ωi = 0;
κ1(si) g1(t− ti) f1(x− xi | si), if ω = 1.

(65)

Let

H(t, x, s; t′, x′, s′)

=
γ1(s

′) ξ(t′, x′; t, x, s, ω)λ(t, x, s, ω) I(ω = 0)

λ1(t′, x′, s′)λ1(t, x, s)

=
γ1(s

′)κ0(s) g0(t
′ − t) f0(x

′ − x | s)u(x) γ0(s)

λ1(t′, x′, s′)λ1(t, x, s)
. (66)

Then

E





∑

i, j

H(ti, xi, si; tj , xj , sj) I(si ∈ S)





=

∫

κ0(s) γ0(s) ds×

∫∫

u(x) dtdx

≈ δ κ0(s0) γ0(s0)×

∫∫

u(x) dtdx (67)

Use the approximations

ϕi ≈
u(xi) γ0(si)

λ1(ti, xi, si)
(68)

and

ρij ≈
γ1(sj)κ0(si) g0(tj − ti) f0(xj − xi | si)

λ(tj , xj , sj)
, (69)
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we get

H(ti, xi, si; tj , xj , sj) ≈ ϕi ρij . (70)

From (67),

κ̂0(s) =

∑

i, j ϕi ρij I(si ∈ S)
∑

i ϕi I(si ∈ S)
, (71)

where S is a neighborhood of s with a reasonable volume.

Similarly, let

H(t, x, s; t′, x′, s′) =
γ1(s) ξ(t

′, x′; t, x, s, ω)λ1(t, x, s, ω) I(ω = 1)

λ1(t′, x′, s′)λ1(t, x, s)
,

=
γ1(s)ξ(t

′, x′; t, x, s, ω)

λ1(t′, x′, s′)

[

1−
λ1(t, x, s, ω) I(ω = 0)

λ1(t, x, s)

]

, (72)

then

E





∑

i, j

H(ti, xi, si; tj , xj , sj) I(si ∈ S)





=

∫

κ1(s) γ1(s) I(s ∈ S) ds×

{

E

[
∫∫

λ1(t, x, s) dtdxds

]

−

∫∫

u(x) dtdx

}

≈ δ κ1(s0) γ1(s0)

{

E

[
∫∫

λ1(t, x, s) dtdxds

]

−

∫∫

u(x) dtdx

}

. (73)

Similar to (71), the triggering abilities of non-background events can be reconstructed through

κ̂1(s) =

∑

i, j(1− ϕi) ρij I(si ∈ S)
∑

i(1− ϕi) I(si ∈ S)
, (74)

where S is again a neighborhood of s with a reasonable volume.

The other functions, g1, g2, f1 and f2, can be reconstructed in similar ways.

7.4. Testing dependence between direct offspring events and parent events

Magnitude dependence To test whether the magnitudes of the offspring is dependent on their direct ancestor’s

magnitude is equivalent to the problem of testing the original model against a more complicated model with a

condition intensity in the form of

λ1(t, x, s) = u(x) γ0(s) +
∑

i: ti<t

κ(si) g(t− ti) f(x− xi | si) γ1(s | si). (75)
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Fig. 3. (a) Reconstructed p.d.f of the magnitude distributions for all the events, background events and triggered events, i.e., as
in (48), (61) and (62), respectively; (b) Reconstructed triggering abilities (average number of offspring can be triggered by the
events of same magnitude) for all the events, background events and triggered events, as in (51), (71) and (74), respectively;
(c) Reconstructed p.d.f of the occurrence times of offspring relatively to the occurrence time of their direct ancestor. In (a) and
(b), magnitude 4.2 on the horizontal axes corresponds to s = 0.

In the new model, set

H(t, x, s; t′, x′, s′) =
κ(s) g(t′ − t) f(x′ − x | s) γ1(s

′ | s)

λ1(t′, x′, s′)
, (76)

then

E





∑

i, j

H(ti, xi, si; tj , xj , sj) I(si ∈ S) I(sj ∈ S′)





= E

[
∫∫∫∫∫∫

κ(s) g(t′ − t) f(x′ − x | s) γ1(s
′ | s) I(s ∈ S) I(s′ ∈ S′)λ1(t, x, s) dt

′ dx′ds′ dtdxds

]

≈ δ δ′ γ1(s
′
0 | s0)κ(s0)E[λ1(t, x, s0)] (77)

where S and S′ are neighborhoods of s0 and s′0 of volumes δ and δ′, respectively.

Consider ρij ≈ H(ti, xi, si; tj , xj , sj) in (77), the function γ1(s
′ | s) can approximately reconstructed by

γ̂1(s
′ | s) =

∑

i, j

ρij I(si ∈ S) I(sj ∈ S′)

∑

i, j ρij I(si ∈ S)
. (78)

Example 8. Testing dependence of the magnitudes between the ancestors and the direct offspring in the JMA

catalogue As shown in Figure 7.4, the magnitudal distributions of the offspring are different when the ancestor

magnitude changes. This may indicate the existence of such dependence (Zhuang et al., 2004), or, be caused by

the low detection ability of monitoring network to the shocks immediately after the mainshocks (Kagan, 2004).
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Fig. 4. Magnitude dependence: reconstructed p.d.f of magnitudes of the offspring directly triggered by ancestors of different
magnitude classes. Magnitude 4.2 corresponds to s = 0.

Spatial scaling factor and triggering abilities Immediate questions to (38) are: (1) Is the scaling factor Deαs

necessary, i.e., can it be replaced by a constant D0? (2) Should the scaling factor Deαs have the same exponent α

as in the triggering abilities of (35)? (3) Is the scaling factor an exponential law?

Suppose that the p.d.f for the locations of offspring should be expressed as f(x | s) = f(x, σ(s)), where σ(s) is

a continuous function of s. Then for each s, σ(s) can be estimate through maximizing the following pseudo-log-

likelihood

PLL(σ(s)) =
∑

i, j

ρij log f(xj − xi, σ(si)) I(si ∈ [s− δ, s+ δ]) (79)

where δ is a small positive number. Maximizing PLL(σ(s)) is equivalent to solving

∑

i, j

ρij I(si ∈ S)
∂

∂σ(s)
log f(xj − xi;σ(s))

∣

∣

∣

∣

s=si

= 0. (80)

To show the validity of (80), let

H(t, x, s; t′, x′, s′) =

γ(s′)κ(s) g(t′ − t)f(x′ − x, σ(s))
∂

∂σ(s)
log f(x′ − x, σ(s))

λ(t′, x′, s′)
, (81)
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Fig. 5. Reconstructed results of σ(s) against the corresponding magnitudes (Magnitude 4.2 corresponds to s = 0) of parent
earthquakes. Circles indicate the values of σ̂(s). (a) shows the reconstructed results from the original model for the JMA
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and (d), the solid lines represent Deαs and the dashed lines represent Deα

′
s.

and then

E





∑

i, j

H(ti, xi, si; tj , xj , sj)I(si ∈ S)





= E

[
∫∫∫∫∫∫

γ(s′)κ(s) g(t′ − t)
∂f(x′ − x;σ(s))

∂σ(s)
I(s ∈ S)λ(t, x, s) dt′ dx′ ds′ dtdxds

]

=

∫

κ(s) I(s ∈ S) γ(s) ds×E[λ(t, x)]×
∂

∂σ(s)

∫

f(x′ − x, σ(s)) dx′

= 0 (82)

because
∫

f(x′ − x, σ(s)) dx′ = 1. Equation (80) can be obtained by using the approximation

ρij ≈
γ(sj)κ(si) g(tj − ti) f(xj − xi, σ(si))

λ(tj , xj , sj)
. (83)

Example 9. The scaling law for the locations of clusters in the JMA catalogue Applying the above procedures
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to the JMA catalogue by using the original model and a model equipped with

f(x|s) =
q − 1

πDeα′s
exp

(

1 +
||x||2

Deα′s

)−q

, (84)

the results are shown in Figure 7.4. For comparison the same procedures are also applied to catalogues simulated

from the same models and parameters as in the fitting results. It can be seen that the scaling law for the spatial

locations of offspring is still an exponential law, but not the same as the one for the triggering abilities. This

conclusion results in a new revision of the formulation of the space-time ETAS model in the form of (84) in practice

(Ogata and Zhuang, 2005; Zhuang et al., 2005).

8. Conclusions

I propose the principles of the second-order residual analysis for multi-dimension space-time point processes. The

uses of these residuals are illustrated by examples, especially the space-time ETAS model with non-homogeneous

background rate, which has been used to show the powers of residual analysis in testing a number of hypotheses

of general interests associated with seismicity clustering patterns.
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