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Supplementary Figure 1. The MCMC chains of the ETAS parameters sampled from the posterior
distribution, Eq. (3), for the Kumamoto sequence from Ts = 0.05 to Te = 2.16 days and for earthquake
magnitudes above mc = 3.3. The total number of 200,000 steps were generated and 100,000 steps were
discarded as burn-in.
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Supplementary Figure 2. The distribution of the ETAS parameters computed from the MCMC
chains given in Figure 1. The corresponding mean, standard deviation, and 95% Bayesian confidence
bounds for the parameters are provided in the legend. The solid curves represent the prior Gamma
distribution for each model parameter.
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Supplementary Figure 3. The matrix plot of the pairs of the ETAS parameters computed from the
MCMC chains given in Figure 1 and showing the correlation structure of the simulated parameters.
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Figure S4. Shcherbakov et al., 2019.

a)

Supplementary Figure 4. Bayesian predictive distribution PB(mex ≤ m|Sn) as solid curves and the
corresponding probability density function pB(m|Sn), as histograms, for the sequence initiated by the
April 14, 2016, M6.5 foreshock of the M7.3 Kumamoto earthquake (April 16, 2016). Each curve
corresponds to the same early training time interval from Ts = 0.03 to Te = 1.16 days with all the events
above magnitude mc ≥ 3.1 and for the different forecasting time intervals ∆T = 5, 10, 15 days. The
probabilities to have large earthquakes above magnitudes mex ≥ 6.5 and mex ≥ 7.3 are given in the legend.
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Figure S5a. Shcherbakov et al., 2019.

a)
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Figure S5b. Shcherbakov et al., 2019.

b)

Supplementary Figure 5. Bayesian predictive distribution PB(mex ≤ m|Sn) as solid curves and the
corresponding probability density function pB(m|Sn), as histograms, for the sequence initiated by the
April 14, 2016, M6.5 foreshock of the M7.3 Kumamoto earthquake (April 16, 2016). Each curve
corresponds to the same early training time interval a) from Ts = 0.03 to Te = 1.16 days and b) from
Ts = 0.05 to Te = 2.16 days, a fixed forecasting time interval ∆T = 10 days, and varying lower magnitude
cutoffs a) mc = 3.1, 3.3, and 3.5 and b) mc = 3.3, 3.5, and 3.7. The probabilities to have large earthquakes
above magnitudes a) m = 6.5 and m = 7.3 and b) m = 5.8 and m = 6.3 are given in the legend.
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Figure S6a. Shcherbakov et al., 2019.

a)
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Figure S6b. Shcherbakov et al., 2019.

b)

Supplementary Figure 6. Comparison of the Bayesian predictive distributions PB(mex ≤ m|Sn) for
the Kumamoto sequence for varying means of the Gamma prior distribution. Each curve corresponds to
the same early training time interval from Ts = 0.05 to Te = 2.16 days, a fixed forecasting time interval
∆T = 10 days. a) The mean value of the prior distribution corresponding to the ETAS parameter µ is
varied. b) The mean value of the prior distribution corresponding to the ETAS parameter K is varied.
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Figure S7. Shcherbakov et al., 2019.

a)

Supplementary Figure 7. Comparison of the Bayesian predictive distributions PB(mex ≤ m|Sn) for
the largest expected aftershock to be larger than m for several combinations of the proposal and prior
distributions. Each curve corresponds to the same training time interval from Ts = 0.05 to Te = 2.16 days,
a fixed forecasting time interval ∆T = 10 days, and the lower magnitude cutoff mc = 3.3. The
distributions were computed using the following pairs for the proposal distribution and the prior
distribution: truncated Normal and flat prior (solid blue curve); lognormal and flat prior (dashed magenta
curve); truncated Normal and Gamma prior (solid light green curve); lognormal and Gamma prior (dashed
blue curve); truncated Normal and truncated Normal prior (solid pink curve); lognormal and truncated
Normal prior (dashed violet curve).
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Figure S8. Shcherbakov et al., 2019.

a)

Supplementary Figure 8. Comparison of the extreme value distributions computed using Eq. (11)
(solid blue curve) and computed empirically (solid orange curve) by simulating the ETAS model during
the forecasting time interval ∆T = 10 days and using the MCMC chain of the model parameters given in
Figure S1.
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Supplementary Figure 9. The ETAS model fitting to the 2016 Kumamoto, Japan, earthquake
sequence for the target time interval [Ts, Te] = [0.03, 1.16], where T0 = 0 corresponds to the time of the
occurrence of M6.5 foreshock. The following ETAS parameters were estimated: µ = 1.0, K = 0.73,
c = 0.02, p = 1.27, and α = 2.1 for the earthquakes above mc = 3.1. a) The earthquake magnitudes in the
sequence and the estimated conditional earthquake rate (solid blue curve) according to the ETAS model,
λω(t|Ht). b) The plot of the cumulative earthquake rate (orange symbols) and the ETAS model fit (solid
blue curve). c) The cumulative earthquake rate and the ETAS model fit in transformed time.
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Supplementary Figure 9. (Continued.)
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Supplementary Figure 10. The ETAS model fitting to the 2016 Kumamoto, Japan, earthquake
sequence for the target time interval [Ts, Te] = [0.05, 2.16], where T0 = 0 corresponds to the time of the
occurrence of M6.5 foreshock. The following ETAS parameters were estimated: µ = 9.36, K = 0.67,
c = 0.019, p = 1.27, and α = 2.14 for the earthquakes above mc = 3.3. a) The earthquake magnitudes in
the sequence and the estimated conditional earthquake rate (solid blue curve) according to the ETAS
model, λω(t|Ht). b) The plot of the cumulative earthquake rate (orange symbols) and the ETAS model fit
(solid blue curve). c) The cumulative earthquake rate and the ETAS model fit in transformed time.
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Supplementary Figure 10. (Continued.)
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Supplementary Notes

Supplementary Note 1. Analytical derivation of the extreme value distribution for the

ETAS model.

Consider the conditional intensity, Eq. (7), of the ETAS model in the following form

λ (t|Ht) = µ + ∑
i: ti<t

κ(mi)g(t− ti) , (S1)

where

κ(m) = Aeα(m−m0) and g(t) =
p−1

c

(
1+

t
c

)−p
. (S2)

This form of the conditional rate is equivalent to the one given in Eq. (7) with A = K(p−1)/c.

Suppose that we are interested in the maximum earthquake magnitude in the forecasting time interval

[T1, T2] under the condition that n earthquakes occurred during the preceding training time interval [0, T1],

S = {(ti,mi) : i = 1, 2, ..., n}. In the following, we derive an expression for this maximum magnitude in a

similar fashion as in1–5.

The probability that the maximum magnitude mex in [T1, T2] is

H(m,T1,T2 | S) = Pr
{

the maximum magnitude mex
in [T1,T2] is less than m

∣∣∣∣ observation history
S during [0, T1]

}
= P0×∏

i
Pi , (S3)

where i runs over all the events in S,

P0 = Pr


All background events in [T1,T2] are less than m,
and any descendant of the above background events
is less than m if it occurs in [T1,T2]

 , (S4)

and

Pi = Pr


Any direct offspring from Event i in S is less than m if it
occurs in [T1,T2], and each of the descendants in all
the generations from the direct offspring of Event i that are
in [T1,T2] is less than m if it falls in [T1,T2]

 , (S5)

for i = 1,2, ...,n.
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Using the total probability theorem, one can obtain,

P0 =
∞

∑
k=0

(
Pr


Each background event in [T1,T2] is less
than m and any of its descendants is less
than m if it occurs in [T1,T2]

∣∣∣∣∣∣ k background
events occur


×Pr

{
k background
events occur

})

=
∞

∑
k=0

 m∫
mc

T2∫
T1

ξ (m,T2− t∗; m∗)s(m∗)
1

T2−T1
dt∗ dm∗

k
µk(T2−T1)

k

k!
e−µ (T2−T1)

= e−µ (T2−T1) exp

1− 1
T2−T1

m∫
mc

T2∫
T1

ξ (m,T2− t∗; m∗)s(m∗)dt∗ dm∗

 . (S6)

In the above equation

ξ (m,δ t; m∗) = Pr


For an event occurring at any time, say t∗,
of magnitude m∗, each of its descendants in any
generation is less than m if it falls in [t∗, t∗+δ t]

 , (S7)

which does not depend on t∗ because of stationarity of the process. 1
T2−T1

∫ m
mc

∫ T2
T1

ξ (m,T2−t∗; m∗)s(m∗)dt∗ dm∗

is the probability that any background event in [T1,T2] is less than m and has no descendant of magnitude

m or higher, and 1
T2−T1

and s(m) are the probability density functions of the occurrence time and magnitude

for the background events in [T1,T2], respectively. Similarly one can have

Pi =
∞

∑
k=0

(
Pr


Each direct offspring in [T1,T2]
from Event i is less than m and any
descendant from this direct offspring
is less than m if it occurs in [T1, T2]

∣∣∣∣∣∣∣∣
Event i produces k direct
offsprings in [T1, T2]


×Pr

{
Event i produces k direct
offsprings in [T1, T2]

})

=
∞

∑
k=0

([∫ m

mc

∫ T2

T1

ξ (m,T2− t∗; m∗)s(m∗)g(t∗− ti)dt∗ dm∗
]k

×κ(mi)
k[G(T2− ti)−G(T1− ti)]k

k!
e−κ(mi)[G(T2−ti)−G(T1−ti)]

)
= exp{−κ(mi) [G(T2− ti)−G(T1− ti)]}

×exp
{[

1−
∫ m

mc

∫ T2

T1

ξ (m,T2− t∗; m∗)s(m∗)g(t∗− ti)dt∗ dm∗
]}

, (S8)

where G(t) =
∫ t

0 g(u)du. Due to the branching structure of the ETAS model and Eq. (S7), ξ (m,δ t; m∗)
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satisfies

ξ (m,δ t; m∗) =
∞

∑
k=0

(
Pr


Each direct offspring in [t∗, t∗+δ t]
from an event at (t∗,m∗) is less
than m and any descendant from
this direct offspring is less than
m if it occurs in [t∗, t∗+δ t]

∣∣∣∣∣∣∣∣∣∣
An event at (t∗,m∗)
produces k direct
offspring in [t∗, t∗+δ t]


×Pr

{
An event at (t∗,m∗) produces
k direct offsprings in [t∗, t∗+δ t]

})

=
∞

∑
k=0

[∫ m

mc

∫
δ t

0
ξ (m,δ t− t ′; m′)s(m′)g(t ′)dt ′ dm′

]k
κ(m∗)k G(δ t)k

k!
e−κ(m∗)G(δ t)

= exp
{
−κ(m∗)G(δ t)

[
1−

∫ m

mc

∫
δ t

0
ξ (m,δ t− t ′;m′)s(m′)g(t ′)dt ′dm′

]}
. (S9)

By inspecting the above equation, Eq. (S9), it is easy to see that

ξ (m,δ t; m∗) = exp [−κ(m∗)η(m,δ t)] . (S10)

Substituting Eq. (S10) into Eq. (S9), one obtains

η(m,δ t) = G(δ t)
[

1−
∫ m

mc

∫
δ t

0
exp
[
−κ(m′)η(m,δ t− t ′)

]
s(m′)g(t ′)dt ′ dm′

]
, (S11)

which is the probability that an arbitrary event has a magnitude less than m and that it produces no

descendant equal to m or larger during the future time interval of length δ t.

Finally, one obtains

P0 = exp
{
−µ(T2−T1)

[
1− 1

T2−T1

∫ m

mc

∫ T2

T1

e−κ(m∗)η(m,T2−t∗) s(m∗)dt∗ dm∗
]}

, (S12)

Pi = e−κ(mi)[G(T2−ti)−G(T1−ti)] exp
[

1−
∫ m

mc

∫ T2

T1

e−κ(m∗)η(m,T2−t∗)s(m∗)g(t∗− ti)dt∗dm∗
]
. (S13)

Therefore, to calculate H(m,T1,T2 | S), one needs to compute the function η(m,δ t) by solving the integral

functional equation in Eq. (S11), and then to compute P0 and Pi in Eqs. (S12) and (S13), respectively.

Though such a solution is computationally intensive, it illuminates that the extreme value problems associ-

ated with the ETAS model (or a more general Hawkes process) always yield integral functional equations.

In practice, it can be replaced by the numerical approximation using the Monte Carlo simulations.
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Supplementary Note 2. Fitting the ETAS model to the 2016 Kumamoto, Japan, earth-

quake sequence

Here we provide the results of the fit of the ETAS model to the 2016 Kumamoto earthquake sequence

using the standard maximum likelihood approach. In this analysis the model parameters are estimated by

maximizing the log-likelihood function, which can be written as follows:

log [L(SNe |θ ,ω)] = −µ (Te−Ts)

− K c
p−1

Ns

∑
i=1

eα(mi−m0)

[(
Ts− ti

c
+1
)1−p

−
(

Te− ti
c

+1
)1−p

]

− K c
p−1

Ne

∑
i=1:Ts≤ti≤T

eα(mi−m0)

[
1−
(

T − ti
c

+1
)1−p

]

+
Ne

∑
j=1

log

µ +K
Nt j

∑
i:ti<t j

eα(mi−m0)(
t j−ti

c +1
)p

 , (S14)

where Ns is the number of earthquakes in the time interval [T0, Ts[, if any, preceding the target time interval

[Ts, Te]. The second sum is over Ne earthquakes that occurred during the target time interval [Ts, Te]. The

double sum involves the summation over Ne earthquakes in the interval [Ts, Te], where the rate in the

internal sum is computed for all events starting from T0 up to a given t j.

The productivity of the ETAS process during the target time interval [Ts, Te] is:

Λω(Ts,Te) =

Te∫
Ts

λω(t|Ht)dt =
Te∫

Ts

[
µ +K

Nt

∑
i:ti<t

eα(mi−m0)( t−ti
c +1

)p

]
dt

= µ (Te−Ts)+
K c

p−1

Ns

∑
i=1

eα(mi−m0)

[(
Ts− ti

c
+1
)1−p

−
(

Te− ti
c

+1
)1−p

]

+
K c

p−1

Ne

∑
i=1:Ts≤ti≤Te

eα(mi−m0)

[
1−
(

Te− ti
c

+1
)1−p

]
, (S15)

where Ns is the number of earthquakes in the time interval [T0, Ts[, if any, preceding the target interval

[Ts, Te]. The second sum is over Ne earthquakes that occurred during the target time interval [Ts, Te]. The

productivity of the ETAS process Λω(∆T ) during the forecasting time interval [Te, Te +∆T ] cannot be

directly computed and needs to be estimated from the stochastic simulation of the ETAS model due to its

intrinsic randomness.
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The sequence starting from the M6.5 foreshock that occurred on 14 April 2016 (12:26 UTC) was

considered. The starting time T0 = 0 was set to the time of the occurrence of this foreshock. Earthquakes

during two target time intervals [Ts, Te] = [0.03, 1.16] days and [Ts, Te] = [0.05, 2.16] days were considered

to be fitted by the ETAS model. The estimated conditional rate, λω(t|Ht), and the earthquake magnitudes

as marks above the lower cutoff mc = 3.1 are plotted in Supplementary Figure 9a for the first target interval

[Ts, Te] = [0.03, 1.16]. When estimating the parameters the constraint µ = 0 was used. The cumulative

number of earthquakes above mc = 3.1 is plotted in Supplementary Figure 9b and the earthquake number

in the sequence (cumulative number) versus the transformed time is plotted in Supplementary Figure 9c.

The transformed time is defined as follows t̃ ≡ Λω(Ts, t) =
t∫

Ts

λω(t ′|Ht ′)dt ′. It is computed by using the

estimated ETAS parameters. The plot in transformed time provides visual check on the goodness of fit of

the ETAS model, i.e. closer the cumulative earthquake number to the straight line better the ETAS fit is.

Similarly, we provide the estimated ETAS parameters for the second sequence during the target time

interval [Ts, Te] = [0.05, 2.16]. The conditional earthquake rate, the earthquake magnitudes, the cumulative

rate and the rate in transformed time for this sequence with the lower magnitude cutoff mc = 3.3 are

plotted in Supplementary Figure 10.
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