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Sample-Based Neural Approximation Approach
for Probabilistic Constrained Programs
Xun Shen , Member, IEEE, Tinghui Ouyang , Nan Yang , and Jiancang Zhuang

Abstract— This article introduces a neural approximation-
based method for solving continuous optimization problems with
probabilistic constraints. After reformulating the probabilistic
constraints as the quantile function, a sample-based neural
network model is used to approximate the quantile function.
The statistical guarantees of the neural approximation are
discussed by showing the convergence and feasibility analysis.
Then, by introducing the neural approximation, a simulated
annealing-based algorithm is revised to solve the probabilistic
constrained programs. An interval predictor model (IPM) of wind
power is investigated to validate the proposed method.

Index Terms— Neural network model, nonlinear optimiza-
tion, probabilistic constraints, quantile function, sample average
approximation.

I. INTRODUCTION

PROBABILISTIC-constrained programs (PCPs) or chance-
constrained programs (CCPs) are mathematical programs

involved random variables in constraints, which is required
to be satisfied in a given probability level [1]. In this study,
the appellation of PCPs is adopted. PCPs have been used
in various fields, such as decision-making and filtering in
uncertain systems [2], motion planning with probabilistic
constraints [5], engine combustion control [3], probabilistic
bound estimation of uncertain state trajectories [4], and energy
storage modeling toward distribution systems in electricity
market [6].

PCPs have a great value for practical applications. However,
it is NP-hard to solve the PCPs directly due to the existence
of probabilistic constraints. Thus, a lot of research has been
conducted to develop an approximation approach to solve the
PCPs. For instance, Calariore and Campi [7] proposed the
scenario approach in which the probabilistic constraints are
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replaced by deterministic constraints imposed for finite sets of
independently extracted samples of random variables. The sce-
nario approach ensures that the solution of the approximately
formulated deterministic program satisfies the original proba-
bilistic constraints with a determined bound of probability. The
bound of probability is determined by the number of extracted
samples. Afterward, the scenario approach has been improved
to ensure more tight confidence bounds of probability by
a sampling-and-discarding approach [8]. In the sampling-
and-discarding scenario approach, a certain proportion of the
extracted samples are used to define the deterministic con-
straints, while the rest ones are discarded. With a less sample
number, the violation probabilities of the original probabilistic
constraints are still preserved. However, the scenario approach
has a fatal drawback. It gives a too conservative solution,
which converges to the totally robust solution of the uncertain
constraints rather than the original probabilistic constraints.
Namely, as the sample number becomes infinity, the solution
will satisfy the uncertain constraints with probability 1 rather
than the given level of probability.

On the other hand, a sample average approach has been
proposed in [9] and [10] to satisfy the probabilistic con-
straints strictly. The sample average program is formulated
as an approximation of the PCP by replacing the probabilistic
constraints with a measure to indicate the violation probability.
Besides, an inner–outer approximate approach is proposed
in [11] to get a tight sample average approximate program.
A randomized optimization-based method is used to solve
PCPs in [12].

This article extends the sample average approach by intro-
ducing neural network-based constraints to replace probabilis-
tic constraints. After reformulating the probabilistic constraints
as the quantile function, a sample-based neural network model
is used to approximate the quantile function. The statistical
guarantees of the neural approximation are discussed by show-
ing the convergence and feasibility analysis. Then, by intro-
ducing the neural approximation, a simulated annealing-based
algorithm is revised to solve the PCPs. An interval predictor
model (IPM) of wind power is investigated to validate the
proposed method.

This article is organized as follows. Section II gives the
problem formulation. Section III demonstrates the proposed
neural approximation approach and the proposed algorithm is
introduced in Section IV. Section V presents how to use the
proposed method to establish IPM of wind power. Finally,
Section VI concludes this article.
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II. PROBLEM FORMULATION

Consider the following optimization problem with proba-
bilistic constraints:

min
u∈U

J (u)

s.t. Pr{h(u, δ) ≤ 0} ≥ 1 − α, δ ∈ �, α ∈ (0, 1) (1)

where u represents the decision variable with a closed and
compact feasible domain U ⊆ Rnu , J : Rnu → R is the
objective function, δ represents an uncertain parameter vector
with sample space � ⊆ Rnδ , probability measure is well
defined on the B� (the sigma algebra of �) and the probability
density of δ is denoted as pδ(δ), h : R

nu × R
nδ → R

nh is a
vector-valued function, and α is a risk parameter. The notation
of the probabilistic constraints is that the constraints repre-
sented by h(u, δ) ≤ 0 should be satisfied with a probability
larger than 1 − α. Besides, this study focuses on problems
in which J and h are continuous and differentiable ∀u ∈ U
and ∀δ ∈ �. The uncertain variable h(u, δ) has a continuous
cumulative distribution function (CDF) for all u ∈ U .

There are several difficulties to address problem described
by (1).

1) The structural properties of the feasible domain defined
by h(u, δ) ≤ 0 may not succeed to the domain defined
by the constraints Pr{h(u, δ) ≤ 0} ≥ 1−α. For instance,
even if h are all linear in u, the probabilistic constraint
may not define a convex domain.

2) Instead of knowing the distribution of δ, only the sam-
ples of δ are available.

3) The tractable analytical function of probabilistic con-
straint does not exist even with the knowledge of the
distribution of δ.

This study is to find out a tractable analytical function H (u)
to define a feasible domain Ũ f = {u ∈ U |H (u) ≤ 0}. The
feasible domain Ũ f is equal to the feasible domain U f = {u ∈
U |Pr{h(u, δ) ≤ 0} ≥ 1 − α} with probability as 1. Then,
the problem with deterministic constraints

min
u∈U

J (u)

s.t. H (u) ≤ 0 (2)

is the equivalent problem of (1). By solving (2), the optimal
solution of (1) can be approximated.

III. NEURAL APPROXIMATION APPROACH

A. Quantile Function-Based Problem Reformulation

The cumulative probability function of a random variable X
is denoted as

F(x) = Pr{X ≤ x}. (3)

While the 1 − α level quantile of a random variable X is
defined as [13]

Q1−α(X) = inf{x ∈ R|Pr{X ≤ x} ≥ 1 − α}. (4)

For the case nh = 1, h : Rnx × Rnδ → R is a real-valued
function and h(u, δ) is a scalar random variable. Thus, the
cumulative probability function of h(u, δ) can be defined as

F(γ, u) = Pr{h(u, δ) ≤ γ }, γ ∈ R. (5)

Fig. 1. Comparison of 1 − α − Pr{h(u, δ) ≤ 0} and Q1−α(h(u, δ)), where
h(u, δ) = 1.5u2 − 3 + δ and δ ∼ N(0, 1) (α = 0.1).

The quantile Q1−α(h(u, δ)) ≤ 0 is equivalent to F(0, u) ≥
1 − α. For the case nh > 1, Q1−α(h(u, δ) ≤ 0 cannot be
well defined since h(u, δ) is not a scalar random variable any
more. Instead of using h(u, δ), h̄(u, δ) = max j=1,...,nh h j (u, δ)
is used. Then, the cumulative probability function F(γ, u)
notes the same style as (5) only replacing h(·, ·) by h̄(·, ·).
Consequently, the quantile is written as Q1−α(h̄(u, δ) ≤ 0.
Without losing the generality, Q1−α(h̄(u, δ) ≤ 0 can be used
for nh = 1 as well. Then, the following reformulation of
problem (1) is written as:

min
u∈U

J (u)

s.t. Q1−α
(
h̄(u, δ)

) ≤ 0, δ ∈ �, α ∈ (0, 1). (6)

The advantage of using the quantile is that the quantile
function is much less flat compared to the probability function
Pr{h(u, δ) ≤ 0}. The comparison example of the quantile
function and probability function is shown in Fig. 1. By the
quantile function-based reformulation, the feasible region is
measured in the image of h̄(u, δ) instead of the bounded
image [0, 1] of the probability function.

B. Neural Approximation of Quantile Function

The sample set �N = {δ1, . . . , δN } is obtained by extracting
samples independently of � according to the identical distri-
bution pδ(δ). For a given u, the empirical CDF of HN =
{h(u, δ1), . . . , h(u, δN )} is written as

F̃ N (t, u) = 1

N

N∑
i=1

I
(
h̄(u, δi ) ≤ t

)
(7)

where I(h(u, δi ) ≤ t) denotes the indicator function written as

I
(
h̄(u, δi) ≤ t

) =
{

0, if h̄(u, δi ) > t

1, if h̄(u, δi ) ≤ t .
(8)

The (1 − α)-empirical quantile at u can be obtained from a
value t such that F̃ N (t, u) ≈ 1 − α, which is defined as

Q̃1−α
(
h̄(u, δ)

) = inf

{
y

∣∣∣∣ 1

N

N∑
i=1

I
(
h̄(u, δi) ≤ y

) ≥ 1 − α

}
(9)

equivalently written as

Q̃1−α
(
h̄(u, δ)

)) = h̄
M�(u) (10)
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where M = 
(1−α)N� and h̄
M�(u) denotes the Mth smallest
observation of the values HN for a given u.

We can use the (1 − α)−empirical quantile as an approxi-
mation of the probabilistic constraints and form the following
approximate problem:

min
u∈U

J (u)

s.t. Q̃1−α
(
h̄(u, δ)

) ≤ 0, δ ∈ �, α ∈ (0, 1). (11)

Using the (1 − α)-empirical quantile as an approximation
of the probabilistic constraints has two drawbacks.

1) Q̃1−α(h̄(u, δ))) is usually not differentiable. M changes
for different values of u. Thus, even if the constraint
h(u, δ) is smooth for a fixed value of δ, Q̃1−α(h̄(u, δ)))
does not have to be smooth.

2) For small N , the uncertainty of Q̃1−α(h̄(u, δ))) is large
and the inward kinks of the feasible boundary will be
very nonsmooth. Large N can bring some smoothness
back, and however, this also increases the computation
burden.

Thus, it is necessary to look for the smooth approximation of
(1 − α)-empirical quantile.

Given the sample set �N , the (1 − α)-empirical quantile
Q̃1−α(h̄(u, δ))) is essentially a function of u. Q1−α(h̄(u, δ)))
is also a function of u. By using Q̃1−α(h̄(u, δ))) as an
approximation of Q1−α(h̄(u, δ))), a smooth function can be
used to approximate the (1 − α) quantile Q1−α(h̄(u, δ))).
In this study, single-layer neural network model is used
to approximate the (1 − α) quantile Q1−α(h̄(u, δ))). Using
N independently extracted samples of δ, the neural approxi-
mation of Q1−α(h̄(u, δ))) with S hidden nodes and activation
function g(·) is defined as

ĤS(u) =
S∑

i=1

βi g(u, ai , bi) (12)

where βi denotes the weight vector connecting the i th hidden
node and the output nodes, ai = [ai,1, . . . , ai,k] represents the
weight vector toward u, and bi is the scalar threshold of the
i th hidden node. Here, the activation function adopts
the sigmoid function expressed as

g(u, ai , bi ) = 1

1 + e−aT
i u+bi

. (13)

The purpose is to achieve

ĤS(u) ≈ Q1−α
(
h̄(u, δ)

))
. (14)

Then, ĤS(·) maps the decision variable u ∈ Rk into the
image of Q1−α(h̄(u, δ))) which is R. In order to find solutions
for (1) and (6), it is equivalent to solve the following problem:

min
u∈U

J (u)

s.t. ĤS(u) ≤ 0. (15)

The above formulation is a sample-based neural approxi-
mation of the original PCP, which is obtained by a two-layer
approximation: sample approximation and neural approxima-
tion. The convergence and feasibility of the two-layer approx-
imation should be analyzed.

C. Convergence and Feasibility Analysis

We make the following assumptions.
Assumption 1: h̄(u, δ) is a Carathéodory function. For

every fixed u ∈ U , h̄(u, δ) is a continuous random variable,
which is measurable and has a continuous distribution. For
every fixed δ ∈ �, h̄(u, δ) is a continuous function of u.
Besides, for every u ∈ U , Fh̄(h̄(u, δ)), the CDF of h̄(u, δ),
is continuously differentiable and it has strictly positive deriva-
tive of h̄(u, δ) (strictly monotonically increasing), fh̄(h̄(u, δ)),
over the domain of h̄(u, δ): (−∞,+∞).

Remark 1: The CDF Fh̄(h̄(u, δ)) is continuously and
strictly monotonically increasing over (−∞,+∞). Thus,
the quantile function Q(h̄(u, δ)) : [0, 1] → Dh̄(u,δ) is the
inverse of Fh̄ and thus continuous on [0, 1]. Moreover, for
a fixed δ ∈ �, h̄(·, δ) is continuous on U . Thus, the values
of the CDF Fh̄(h̄(u, δ)) and the quantile function Q(h̄(u, δ))
vary continuously on U due to the fact that continuous
functions’ function composition leads to continuous function.
Thus, Assumption 1 implies that the 1 − α level quantile
Q1−α(h̄(u, δ)) is a continuous function of u on U .

Assumption 2: The problem expressed by (1) has a globally
optimal solution u∗, such that for any �u , there is u ∈ U such
that �u − u∗� ≤ �u and F(0, u) > 1 − α (or equivalently
Q1−α(h̄(u, δ)) < 0).

Remark 2: Assumption 2 implies that there exists a
sequence {uk}∞k=1 ⊆ U that converges to an optimal solution
u∗ such that F(0, uk) > 1 − α (or equivalently Q1−α(h̄(uk,
δ)) < 0) for all k ∈ N.

By applying [14, Corollary 21.5], we have the following
lemma about the convergence of Q̃1−α(h̄(u, δ)).

Lemma 1: Suppose that Assumption 1 holds. For any fixed
α ∈ (0, 1) and any fixed u ∈ U , if N samples of δ, δi ,
i = 1, . . . , N , are independently extracted, then

Q̃1−α − Q1−α = − 1

N

N∑
i=1

I
(
h̄i ≤ Q1−α

) − (1 − α)

f
(
Q1−α

) + o(1)

(16)

where Q̃1−α , Q1−α , and h̄i are shorts for Q̃1−α(h̄(u, δ)),
Q1−α(h̄(u, δ)), and h̄(u, δi), respectively.
Consequently, the sequence {Q̃1−α − Q1−α} is asymptotically
normal with mean 0 and variance (α(1 −α))/(N · f 2(Q1−α)).
As N increases to ∞, the variance also vanishes to zeros.

For the convergence of ĤS(u) to Q1−α(h̄(u, δ)), we have
the following theorem.

Theorem 1: Suppose that Assumption 1 holds, as N → ∞,
∀�H > 0 there exists S, a, b, and δ such that

sup
u∈Uc

∥∥ĤS(u) − Q1−α
(
h̄(u, δ)

)∥∥ < �H , w.p.1 (17)

where Uc ⊆ U represents any compact set inside the feasible
area.

Proof (Theorem 1): Due to Assumption 1 and Remark 1,
Q1−α(h̄(u, δ)) is the continuous function of u. Then, according
to the universal approximation theorem [15], [16], ∀�H > 0,
∀Q1−α(h̄(u, δ)), ∃S ∈ N+, β, b ∈ RS, and a ∈ RS×k such
that ∥∥ĤS(u) − Q1−α

(
h̄(u, δ)

)∥∥ < �H (18)
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for all u ∈ U . However, Q1−α(h̄(u, δ)) is not used directly
for fitting the quantile function. The used one is the approx-
imate value Q̃1−α(h̄(u, δ)), which has bias compared to
Q1−α(h̄(u, δ)). The bias is defined by (16). Denote d Q1−α =
Q̃1−α − Q1−α . According to Lemma 1, d Q1−α is normal with
mean 0 and variance (α(1−α))/(N · f 2(Q1−α)). As N → ∞,
(α(1−α))/(N · f 2(Q1−α)) → 0. Namely, �d Q1−α� → 0 with
probability 1.

Since we can only obtain Q̃1−α(h̄(u, δ)), instead of (18)
which needs Q1−α(h̄(u, δ)), the following inequality:∥∥ĤS(u) − Q̃1−α

(
h̄(u, δ)

)∥∥ < �H (19)

can be obtained ∀�H > 0,∀Q1−α(h̄(u, δ)), ∃S ∈ N+, β, b ∈
RS, and a ∈ RS×k. Since �ĤS(u) − Q1−α(h̄(u, δ))� =
�ĤS(u)− Q̃1−α(h̄(u, δ))+ Q̃1−α(h̄(u, δ))− Q1−α(h̄(u, δ))� ≤
�ĤS(u) − Q̃1−α(h̄(u, δ))� + �d Q1−α�, we have∥∥ĤS(u) − Q1−α

(
h̄(u, δ)

)∥∥ < �H + ∥∥d Q1−α
∥∥. (20)

Namely, for any �H > 0, we have parameters to satisfy (20).
Notice that �d Q1−α� becomes 0 with probability 1 as N →
∞. Besides, for any N , there exist S, a, b, and δ to satisfy (20)
for any �H > 0. Thus, (17) is proven. �

Let A and AS
N denote the sets of optimal solutions for

problems (1) and (15), respectively. Notice that problem (6)
shares the same set of optimal solutions as problem (1).
Besides, denote J ∗ and J S

N the optimal values of cost functions
in problems (1) and (15), respectively. The convergences of J S

N
and AS

N as N and S increase are summarized in the following.
Theorem 2: Suppose that U is compact, the function J (·)

is continuous, and Assumptions 1 and 2 hold. Then, J S
N → J ∗

and D(AS
N , A) → 0 w.p.1.

Proof (Theorem 2): Due to Assumption 2, the set A is
nonempty and there exists u ∈ U such that Q1−α(h̄(u, δ)) < 0.
According to Theorem 1, ĤS(u) converges to Q1−α

(h̄(u, δ)) < 0, and thus, we can find S0, a0, b0, β0, and
N0 such that ĤS(u) − �H − �d Q1−α� ≤ 0. (�H can be
any small value to 0 and �d Q1−α� decreases to 0 with
probability 1 as N → ∞.) Because ĤS(u) is continuous
in u and U is compact, the feasible set of the approxima-
tion problem (15) is compact as well. Besides, AS

N is not
empty w.p.1 for all N ≤ N0 and all S, a, b, β, and N for
smaller error bound (with higher probability) �H + �d Q1−α�
of (20). Here, we denote ĤS,0(u) for ĤS(u) with parameters
{S0, a0, b0, β0, N0} and input u. Analogously, ĤS,k(uk) is for
ĤS(u) with parameters {Sk, ak, bk, βk, Nk} and input uk . With
parameters {Sk, ak, bk, βk, Nk}, the corresponding notations for
the optimal solution set and optimal cost value are generally
defined as AS,k

N,k and J S,k
N,k .

Let {Nk}∞k=1 ≥ N0 and {Sk, ak, bk, βk, Nk} be two sequences
such that the corresponding �s,k as in (20) decreases to 0.
Let ûk ∈ AS,k

N,k , which means that ûk ∈ U , ĤS,k(ûk) ≤ 0,
and J S,k

N,k = J (ûk). Let û ∈ U be any cluster point of
{ûk}∞k=1. Define {ûl}∞l=1 a subsequence converging to û. Since
ĤS,l(u) defined by {Sl , al, bl, βl, Nl } is continuous and con-
verges uniformly to Q1−α(h̄(u, δ)) on U w.p.1, we have
that Q1−α(h̄(û, δ)) = liml→∞ ĤS,l(ûl) w.p.1. Therefore,
Q1−α(h̄(û, δ)) ≤ 0 and û is feasible for the true problem,

and J (û) ≥ J ∗. Moreover, J (ûl) → J (û) w.p.1, which means
that liml→∞ J S,l

N,l ≥ J ∗. The above is true for any cluster point
of {ûk}∞k=1 in the compact set U , and we have

lim
k→∞

inf J S,k
N,k ≥ J ∗, w.p.1. (21)

Now, by Assumption 2 and Remark 2, there exists an
optimal solution u∗ and a sequence {ûl}∞l=1 converging to u∗
with Q1−α(h̄(ûl , δ)) < 0. Note that ĤS,l(ûl) converges to
Q1−α(h̄(ûl , δ)) w.p.1, and thus, there exist K (l) such that
ĤS,k(ûl) ≤ 0 for every k ≥ K (l) and every l, w.p.1. Assume
that K (l) < K (l + 1) for every l without loss of generality
and define the sequence {ūk}∞k=K (1) by setting ūk = ul for all k
and l with K (l) ≤ k < K (l + 1). We then have ĤS,k(ūk) ≤ 0,
which implies that J S,k

N,k ≤ J (ūk) for all k ≥ K (1). Since f is
continuous and ūk also converges to u∗, we have

lim
k→∞

sup J S,k
N,k ≤ J

(
u∗) = J ∗, w.p.1. (22)

Thus, J S,k
N,k → J (u∗) w.p.1 when k → ∞. Namely,

J S
N → J ∗.
For the proof of D(AS

N , A) → 0 w.p.1, it can refer
to [18, Th. 5.3]. �

For the finite sample feasibility analysis of the approxi-
mation problem solutions, we will make use of Hoeffiding’s
inequality [18], [19]:

Theorem 3: Denote Z1, . . . , Z N for independent random
variables with bounded sample spaces, namely Pr{Zi ∈
[zi,min, zi,max]} = 1,∀i ∈ {1, . . . , N}. Then, if s > 0

Pr

{
N∑

i=1

(Zi − E{Zi }) ≥ s N

}
≤ e

− 2N2 s2∑N
i=1(zi,max−zi,min)

2

. (23)

Based on Hoeffding’s inequality, probabilistic feasibility
guarantee of the sample approximation method is proven in [9]
and summarized here as:

Theorem 4: Let u ∈ U be such that u /∈ U f . Then,

Pr
{

F̃ N (−γ, u) ≥ 1 − β
} ≤ e−2Nτ 2

u (24)

where γ > 0, β ∈ [0, α], and τu > 0 is written as

τu = F(0, u) − F(−γ, u) + (α − β). (25)

Theorem 4 shows an important property of approximating
the cumulative probability function by samples. Set γ ≈ 0
and β ≈ α, if the sample number goes to ∞ and
Pr{F̃ N (−γ, u) ≥ 1 − β} goes to 0. Namely, the sample-based
neural approximation problem has the solution, which satisfies
the original probabilistic constraint in a higher probability with
more sample numbers.

IV. PROPOSED ALGORITHMS FOR PCPS

Two algorithms are used to solve PCPs. First, sample-based
algorithm is summarized to train the deterministic constraints,
which has a neural network form. Then, a simulated annealing
algorithm is summarized to solve the deterministic program
obtained by the neural approximation approach.
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A. Algorithm for Training ĤS(u)

Due to the discussion in Section III, the algorithm for
training ĤS(u) is summarized as follows.

1) Generate the sample set of uncertain parameter vector
�N = {δ1, . . . , δN } by extracting samples indepen-
dently of sample space � according to the identical
distribution pδ(δ).

2) Generate the sample set of decision variable U K =
{u1, . . . , uK } by extracting samples independently of
feasible domain U according to uniform distribution.

3) For all uk ∈ U K , calculate the (1−α)-empirical quantile
at uk , Q̃1−α(h̄(uk, δ)), using (9) and obtain the output
sequence Y K = {Q̃1−α(h̄(u1, δ)), . . . , Q̃1−α(h̄(uK , δ))}.

4) Train β, a, b, and c in (12) based on U K and Y K by
the extreme learning machine (ELM) algorithm that is
introduced in [20].

B. Simulated Annealing Algorithm for Approximate Program

Simulated annealing algorithm has been widely used
to address global optimizations with constraints in many
fields [21]–[25] and has also been proved to be practical
for nonconvex optimization [26], [27]. After using neural
approximation approach, we obtain the original problem with
deterministic constraints. The deterministic constraints have
the neural network formulation. The original edition of simu-
lated annealing algorithm is not presented here, which can be
found in [22] and [26]. After minor revision on the original
algorithm, it can be used to solve the deterministic constrained
problem. The algorithm is summarized as follows.

1) Initialize a temperature T0 and a decision value u∗ and
calculate the cost value as

E∗ = J
(
u∗) + C

(
ĤS

(
u∗)) (26)

where

C
(
u∗) =

{
0, if ĤS

(
u∗) < 0

C̄, if ĤS
(
u∗) ≤ 0

(27)

where C̄ should be chosen as a very larger value.
2) For iteration m = 1, 2, . . . , M , do the following step

iteratively.

a) Randomly select another point um ∈ Vr (u∗) =
{um ∈ U |�um − u∗� ≤ r}. Vr (u∗) a neighborhood
of the previous point and r is the radius. Calculate
the corresponding cost value Em similarly as (27).

b) Calculate

�Em = Em − E∗. (28)

c) Move to the new point by setting um = u∗ if a
random variable μ distributed uniformly over (0,1)
satisfies

μ ≤ e
− �Em

Tm−1 (29)

or equivalently

�Em ≤ −Tm−1 log μ. (30)

Fig. 2. Power curve of an industrial wind turbine.

d) Update the temperature as

Tm =
{

Tm−1, if (29) holds

ρ · Tm−1, if (29) doesn’t hold
(31)

where ρ ∈ (Tmin/T0, 1).
e) Terminate the algorithm if Tm < Tmin, where Tmin is

the lower boundary for the temperature or m = M .

V. APPLICATION TO IPM OF WIND POWER

A. Wind-Turbine Power Curve and Dataset

The predictor model of wind power is used to predict the
wind power based on wind speed measurement [28]. Fig. 2
shows the power curve constructed from the industrial data.
The data come from a large wind farm located in Jiugongshan,
Hubei, China. The dataset was collected at turbines at a
sampling interval of 10 min. In total, 56 618 data points were
collected from March 17, 2009, to April 17, 2009. The unit
of the active wind power is kW, and the value of power is
normalized for air density of 1.18 kg/m3.

Piecewise models are often used to improve the prediction
accuracy [29], [30]. The wind speed range is discretized into
intervals, and the corresponding wind speed and power data
make the partitions. Supposing that the cut-out speed is vco,
the speed range [0, vco] is divided into Nw equal length
intervals. The data points in each interval are defined as

Di = {
(v, p(v)) ∈ R

2
∣∣v ∈ [

vi , vi+1)
}
, i = 1, . . . , Nw (32)

where Di represents the points set of the i th partition,
v represents the wind speed, p(v) is the corresponding wind
power, and vi = ((i − 1)/Nw)vco is the demarcation speed
between the i th and (i − 1)th partitions. In this study, vco is
chosen as 20, and Nw is 10, as shown in Fig. 2. Besides,
we do not establish models for all partitions in this study.
As an example to demonstrate the proposed method, the data
in partitions 4 and 5 are used as a unity, which are marked
red circles in Fig. 2. Notice that some under-power points or
stopping points are wiped out by the data preprocess method
introduced in [28, Sec. III]. For convenience, denote the used
dataset as D.
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B. IPM of Wind Power

Consider a system with the mechanism or model from the
input to output written as

y = f
(
ϕ, δy

)
(33)

where y ∈ R denotes the system output and ϕ ∈ R
nϕ is

a regression vector containing input variables u ∈ Rnu or
decision variables on which the system output y depends.
Besides, δy denotes the uncertain parameter vector and δy ∈
�y ⊆ R

nδy . Besides, assume that probability measure is
well defined on the sigma algebra of �y, B�y . Due to the
existence of δy, for a fixed ϕ, y is supposed to be located in a
sample space with well-defined sigma algebra and probability
measure. Let Y(ϕ) be the sample space and py(y|ϕ) be
the probability density function conditioned on ϕ. Standard
predictor models can only give a specific value of y for ϕ.
However, the probabilistic interval of y conditioned on ϕ is
important for various applications.

Differently from standard predictor models, IPMs return a
prediction interval instead of a single prediction value [31].
As defined in [31], an IPM is a set-valued map

I : ϕ → I (ϕ) ⊆ Y ⊂ R (34)

where ϕ ∈ Rnϕ is a regression vector containing input variables
u ∈ Rnu or decision variables on which the system output y
depends. Given an observed ϕ, I (ϕ) is an informative interval
or the prediction interval, containing y with a given guaranteed
probability 1 − α, α ∈ [0, 1). Output intervals are obtained by
considering the span of parametric families of functions. Here,
we consider the family of linear regression functions defined
by

M = {
y = θT ϕ + e, θ ∈ � ⊆ R

nθ , �e� ≤ ε ∈ R
}
. (35)

Then, a parametric IPM is obtained by associating to each
ϕ the set of all possible outputs given by θT ϕ + e as θ varies
over � and e varies over E = {e ∈ R|�e� ≤ ε}, which is
defined as

I (ϕ) = {
y : y = θT ϕ + e ∀θ ∈ � ∀e ∈ E}

. (36)

A possible choice for the set � is a ball with center c and
radius r

� = Bc,r = {
θ ∈ R

nθ : �θ − c� ≤ r
}
. (37)

Then, the interval output of the IPM can be explicitly
computed as

I (ϕ) = [
cT ϕ − (r�ϕ� + ε), cT ϕ + (r�ϕ� + ε)

]
. (38)

For the wind power prediction problem, the input is wind
speed and output is wind power as u = v and y = p. Besides,
ϕ is chosen as ϕ = [u u2]T . Then, ϕ = [v v2]T in the wind
power prediction problem. Identifying the IPM is essentially
identifying (c, r, ε). Without loss of the generality, we use
I(c,r,ε)(v) for I (ϕ) in the latter part for IPM identification
problem of wind power prediction.

Fig. 3. Estimation results of quantile function by using neural networks.

Fig. 4. Results of interval predictions by scenario approach using different
choices of sample number.

Due to the above discussions, the IPM identification prob-
lem of wind power prediction is to find IPM I(c,r,ε)(v) (or find
(c, r, ε)) such that

min
(c,r,ε)

wr + ε (39)

subject to r, ε ≥ 0

Pr
{

p ∈ Ic,r,ε(v)
} ≥ 1 − α, α ∈ [0, 1). (40)

Notice that w is a weight and often chosen as w =
E{�ϕ�} [31]. In this study, w is chosen as 20.

C. Results and Discussion

Fig. 3 shows one example of the estimation results of
quantile function by using neural networks; 5000 different
combinations of (c, r, ε) are considered. The dataset was
divided into a train set and a test set. The blue circles show
the quantile function value given by the trained fitting model.
The red dotted line shows the result of the empirical quantile
function value calculated by using the data of the test set. The
mean value of error is −0.0421 and the mean of the abstract
value of mean is 12.5882.

We compare the proposed method with scenario approach,
which is proposed in [7]. The required α is set as 0.05.
Figs. 4 and 5 show the results of interval predictions by
scenario approach and the proposed method, respectively.
The number of used data samples is 150, 750, or 7500.
As the number of samples increases, the scenario approach
gives more conservative results, while the proposed method
performs with better robust on sample numbers.
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Fig. 5. Results of interval predictions by neural approximation approach
using different choices of sample number. The limitation of violation proba-
bility is α = 0.05.

TABLE I

PROBABILITY THAT CONSTRAINT FAILURE
PROBABILITY α > 0.05: PR{α > 0.05}

TABLE II

MEAN VALUE OF COST FUNCTION

A more comprehensive validation was conducted through
the posterior Monte Carlo analysis. In the validation, the num-
ber of data sample was increased from 150 to 7500. For each
number of data samples, 500 times sampling and calculation
of c, r, ε processes were done. For instance, if we set the
number of data samples as 150. Then, 500 times of extracting
150 samples of (v, p) from the training set were done. For
each extracted 150 samples, the corresponding c, r, ε was
calculated by the scenario approach or proposed method. The
statistical analysis results are summarized in Tables I and II.
Apparently, the proposed method can achieve a better tradeoff
between the probability constraint and the cost value.

VI. CONCLUSION

In this article, a neural approximation-based method for
solving PCP has been proposed. The statistical guarantees of
the proposed method are discussed. Furthermore, IPM of wind
power is investigated with experimental data to validate the
proposed method. In the validation, the proposed method is
compared with the scenario approach. The results show that
the proposed method performs better in the tradeoff between
satisfying the probabilistic constraints and minimizing the cost.
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