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Basic models of seismicity: Spatiotemporal models 3

Abstract In this article, we present a review of spatiotemporal point-process mod-
els, including the epidemic type aftershock sequence (ETAS) model, the EEPAS
(Every Earthquake is Precursor According to Scale) model, the double branching
model, and related techniques. Here we emphasize the ETAS model, because it has
been well studied and is currently a standard model for testing hypotheses related
to seismic activity.

1 Introduction

We assume that the reader has read the articles in this series on purely temporal
models and the time independent spatial models (nonhomogeneous Poisson mod-
els) and that the reader is familiar with related concepts of point process models,
especially the concepts of conditional intensity, likelihood, temporal ETAS model,
and methods for estimating spatial rates of nonhomogeneous Poisson models. In this
article, we continue with spatiotemporal models.

There have not been very many spatiotemporal models to describe seismicity.
One reason is that heavy and complicated numerical computations are always in-
volved in the implementation. Among the few spatiotemporal models that have
been proposed, only the spatiotemporal epidemic-type aftershock sequence (ETAS)
model has been extensively studied in the context of earthquake short-term cluster-
ing. Mathematically, the model is in the class of marked branching processes with
immigration. Even though its formulation is based on empirical statistics, recent
studies by Console et al. (2007) and Iwata (2010) suggest that the ETAS model is
the best model for describing short-term seismicity, outperforming stochastic im-
plementations of the physics-based model of Dieterich (1994). Both the EEPAS
(“Every Earthquake is a Precursor According to Scale”, Rhoades and Evison 2004)
and the double branching models (Marzocchi and Lombardi 2008) have aspects in
common with the ETAS model, i.e., using the ETAS model as the standard cluster-
ing component. For these reasons, we focus on issues related to the spatiotemporal
ETAS model, such as the estimation of the background rate, stochastic declustering,
stochastic reconstruction, etc.

The temporal ETAS model was suggested by Ogata (1988) with the conditional
intensity function of

λ(t) = µ+K0

∑
ti<t

exp[α(m−m0)]

(t− ti + c)p
, (1)

where µ (shocks per unit time) represents the rate of background seismicity, the
summation is taken over aftershocks occurring before time t, and m0 represents
the cut-off magnitude of the fitted data. In the above equation, the coefficient α

http://www.corssa.org/glossary/#epidemic_type_aftershock_sequence_(ETAS)
http://www.corssa.org/glossary/#Poisson_distribution
http://www.corssa.org/glossary/#point_process
http://www.corssa.org/glossary/#maximum_likelihood
http://www.corssa.org/glossary/#stochastic
http://www.corssa.org/glossary/#decluster
http://www.corssa.org/glossary/#conditional_intensity
http://www.corssa.org/glossary/#conditional_intensity
http://www.corssa.org/glossary/#magnitude


4 www.corssa.org

(magnitude−1) is a measure of the efficiency of a shock in generating aftershock
activity relative to its magnitude, K0 represents the productivity of an event of
threshold magnitude m0, and c (unit of time) and p are the parameters in the
Omori-Utsu law for describing the decay of the aftershock sequence.

Before Ogata generalized the temporal ETAS model to a space-time version,
Musmeci and Vere-Jones (1992) used space-time diffusion clustering models to an-
alyze seismicity in Italy. The conditional intensity functions for these models have
the common form

λ(t, x, y) = µ(x, y) +
∑
i:ti<t

gφ(t− ti, x− xi, y − yi,mi), (2)

where

gφ(t, x, y,m) = A
eαmie−c t

2πσxσyt
exp

{
− 1

2t

(
x2

σ2
x

+
y2

σ2
y

)}
, (3)

gφ(t, x, y,m) =
Aeαme−ctt2CxCy

π2(x2 + t2C2
x)(y2 + t2C2

y )
, (4)

and A, α, σx, σy, Cx, and Cy are constants. For a fixed point (x, y), when t→∞ the
aftershocks in (3) and (4) decay with time according to t−1e−ct and t−2e−ct. Kagan
(1991) and Rathbun (1993) also discussed slightly different forms.

The space-time ETAS model defined by Ogata (1998), now the generally accepted
definition, had the same general form as in (2), but where gφ(t, x, y,m) was defined
differently, as

gφ(t, x, y,m) = κ(m)g(t)f(x, y|m). (5)

In the above equation,

κ(m) = Aeα(m−m0) (6)

is the expected number of aftershocks generated from a mainshock of magnitude
m,

g(t) =
p− 1

c
(1 +

t

c
)−p (7)

is probability density function of the lagged time distribution of aftershocks, and

f(x, y|m) =
1

πσ(m)
f

(
x2 + y2

σ(m)

)
(8)

is the density function of the aftershock locations from a mainshock at the origin
with magnitude m.

www.corssa.org
http://www.corssa.org/glossary/#Omori-Utsu_relation
http://www.corssa.org/glossary/#mainshock
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2 Formulation of the spatiotemporal ETAS models

Even though there are some slight differences between the forms adopted by different
researchers, the common forms of these models can be outlined as follows:

(a) The background events are regarded as the “immigrants” in the branching pro-
cess of earthquake occurrence; their occurrence rate is assumed to be a function
of spatial location and magnitude, but not of time.

(b) Each event produces offspring events independently of the others. The expected
number of direct offspring from an individual event is assumed to depend on its
magnitude m, and will be denoted by κ(m), which is called its productivity.

(c) The probability distribution of the time until the appearance of a child event is a
function of the time lag from its parent, and is independent of magnitude; thus, its
probability density function is assumed to have the form g(t|τ) = g(t− τ) where
τ is the occurrence time of the ancestor. Moreover, the function is independent
of what happens between τ and t.

(d) The probability distributions of the location (x, y) and magnitude m of a child
event are dependent on the magnitude m∗ and the location (ξ, η) of its parent.
These probability density functions are denoted by f(x−ξ, y−η|m∗) and s(m|m∗),
respectively, where ξ, η and m∗ are the location and magnitude of the ancestor.

(e) The magnitudes of all the events, including background events and their off-
spring, are independent random variables drawn from the same probability dis-
tribution of density s(m).

In general, this class of marked branching point processes for earthquake occur-
rences can be represented by its conditional intensity function, which is written

Pr {an event in [t, t+ dt)× [x, x+ dx)× [y, y + dy)× [m,m+ dm)| Ht}
= λ(t, x, y,m) dt dx dy dm+ o(dt dx dy dm), (9)

where Ht denotes the space-time-magnitude occurrence history of the earthquakes
up to time t.

Based on the assumptions (a)–(e), the conditional intensity function for the space-
time model can be written as

λ(t, x, y,m) = s(m)

µ(x, y) +
∑

{k: tk<t}

κ(mk)g(t− tk)f(x− xk, y − yk;mk)

 . (10)

In the above equation, µ(x, y) is the background intensity function, which is as-
sumed to be independent of time. The functions g(t), f(x, y;mk) and s(m) are
respectively the normalized response functions (i.e., probability density functions)
of the occurrence time, the location, the magnitude of an offspring from an ancestor

http://www.corssa.org/glossary/#random
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of magnitude mk. And from the fact that the k-th event excites a non-stationary
Poisson process with intensity function κ(mk)g(t− tk)f(x− xk, y− yk;mk)s(m), we
note that κ(mk) is the expected number of children from a parent of size mk. This
implies that the number of children is a Poisson random variable with a mean of
κ(mk). Note also that the probability function g(t) is independent of the magnitude
of the parent, as mentioned in assumption (c). Another explanation of (10) is that
the risk of earthquake occurrence at time t and location (x, y) consists of the contri-
bution from the background rate µ and the contributions from each previous event,
ξ(t, x, y; ti, xi, yi).

According to (10), the conditional intensity function for the model can be de-
composed as

λ(t, x, y,m) = s(m)λ(t, x, y), (11)

where
s(m) = β e−β(m−m0) (12)

represents the Gutenberg-Richter law for earthquake magnitudes of m0 or larger in
the form of a probability density function, β is linked with the so-called b-value by
β = b ln 10, and

λ(t, x, y) = µ(x, y) +
∑

{k: tk<t}

κ(mk)g(t− tk)f(x− xk, y − yk;mk). (13)

In applications, the following specific functions are often used. The productivity
law is given by (6) and the Omori-Utsu law by (7).

For the spatial component, f(x, y;m), the following different functions have been
used:
Model 1 [Rathbun 1993; Console et al. 2003]

f(x, y;m) =
1

2πD2
e−

x2+y2

2D2 ; (14)

Model 2 [Ogata 1998; Zhuang et al. 2002]

f(x, y;m) =
1

2πD2eα(m−m0)
e
− x2+y2

2D2eα(m−m0) , (15)

where the parameter α is the same one as in (6);
Model 3 [Ogata 1998; Console et al. 2003]

f(x, y;m) =
q − 1

πD2

(
1 +

x2 + y2

D2

)−q
; (16)

Model 4 [Ogata 1998; Zhuang et al. 2002, 2004]

f(x, y;m) =
q − 1

πD2eα(m−m0)

(
1 +

x2 + y2

D2eα(m−m0)

)−q
; (17)

www.corssa.org
http://www.corssa.org/glossary/#stationary
http://www.corssa.org/glossary/#mean
http://www.corssa.org/glossary/#Gutenberg-Richter_relation
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and
Model 5 [Zhuang et al. 2005; Ogata and Zhuang 2006]

f(x, y;m) =
q − 1

πD2eγ(m−m0)

(
1 +

x2 + y2

D2eγ(m−m0)

)−q
. (18)

The difference between Models 4 and 5 is that α is identical to the parameter α
in the productivity function κ(m), whereas γ is completely independent of κ(m).
As shown in Zhuang et al. (2004); Zhuang (2006), and Ogata and Zhuang (2006),
Model 5 (18) usually fits earthquake data the best among those five forms. However,
the other four forms are also frequently used by many researchers.

3 Technical points related to the spatiotemporal ETAS model

3.1 Maximum likelihood procedure

Given the background rate µ(x, y) and the observed earthquake catalog, the maxi-

mum likelihood estimates (MLE) of the model, θ̂ = (ν̂, Â, α̂, ĉ, p̂, D̂), are calculated
by maximizing the log-likelihood function

logL(θ) =
∑

i:ti∈[0,T ],(xi,yi)∈S

log λθ(ti, xi, yi)−
∫ T

0

∫∫
S

λθ(t, x, y) dx dy dt, (19)

where the index i runs over all the events occurring in the study region S and
the study time interval [0, T ]. The computational details can be found in Ogata
(1998). Veen and Schoenberg (2008) developed an EM (expectation-maximization)
algorithm for a fast estimation by maximizing the expected log-likelihood.

In (19), the space-time window [0, T ] × S is called the target window, and the
events inside are called target events. Different from the target events, the index
k in (10) runs over all the recorded events in the catalog, whose range is called the
auxiliary or complementary window. Usually the complementary window should be
taken as large as possible. A more detailed discussion of the influence of the size
of the complementary window on the estimated model parameters was provided by
Wang et al. (2010).

3.2 Thinning procedure

An interesting question in seismicity analysis is to what extent a given earthquake is
triggered by a previous earthquake. The so-called thinning procedure (see, e.g., Lewis
and Shedler 1979; Ogata 1981; Daley and Vere-Jones 2003), is an important tool for
such an analysis and will be briefly described here. Below, we use the concept for

http://www.corssa.org/glossary/#earthquake_catalog
http://www.corssa.org/glossary/#maximum_likelihood
http://www.corssa.org/glossary/#maximum_likelihood
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assigning a “degree of parenthood” to earthquake pairs and to estimate the spatial
background density in the ETAS model. The proportion of the contribution from
event i at the occurrence of (tj, xj, yj) could be explained as the probability that
event j is triggered by the ith event,

ρij =


ξ(tj, xj, yj; ti, xi, yi)

λ(tj, xj, yj)
, when j > i,

0, otherwise,
(20)

Moreover, the probability of the event j being a triggered event is

ρj =
∑
i

ρij, (21)

and the probability that the jth event belongs to the background is

ϕj = 1− ρj =
µ(xj, yj)

λ(tj, xj, yj)
. (22)

If we select each event j with probabilities ρij, ρj or ϕj, we can form a new
process being the process triggered by the ith event, the clustering process or the
background process, respectively. More details and an example are given in Section
4.

3.3 Estimating background rate

Given a dataset of earthquake occurrence times, locations and magnitudes in the
observation period T , the spatial distribution of the total seismicity rate is usually
estimated by some nonparametric method, such as splines (Ogata 1998), kernel
functions (Zhuang et al. 2002; Helmstetter et al. 2007), grid averaging (Tsukakoshi
and Shimazaki 2006), or tessellation (Ogata 2004). In this paper, we consider the
variable (adaptive) kernel estimate following Zhuang et al. (2002). A similar adaptive
power law kernel was used by Werner et al. (2011). This adaptive approach is
simple and tackles a serious disadvantage of the simple kernel estimate with a fixed
bandwidth: for a spatially clustered point dataset, a small bandwidth gives a noisy
or variable estimate for the sparsely populated area, while a large bandwidth mixes
up the boundaries between the densely populated areas and the sparsely populated
areas. Therefore, instead of the kernel estimate

m̂1(x, y) =
1

T

N∑
j=1

kd(x− xj, y − yj) (23)

www.corssa.org
http://www.corssa.org/glossary/#seismicity_rate
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where kd(x, y) denotes the Gaussian kernel function

kd(x, y) =
1

2πd2
e−

x2+y2

2d2

with a fixed bandwidth d, we adopt

m̂1(x, y) =
1

T

N∑
j=1

kdj(x− xj, y − yj), (24)

where dj represents the varying bandwidth calculated for each event j in the follow-
ing way: Given a suitable integer np, find the smallest disk centered at the location
of the j-th event which includes at least np other earthquakes and is larger than
some minimum value (e.g., a distance within 0.02 degree, which is of the order of
the location error, see also CORSSA Article in Theme IV) and let this minimum
radius be dj (e.g., Silverman 1986, Chapter 5).

Similar to estimating total seismicity, there have been many approaches for as-
sessing background seismicity rate: (i) proportional to total seismicity rate of all
events or only of the big events in the catalog (Musmeci and Vere-Jones 1986; Con-
sole et al. 2003); (ii) using a declustering method to decluster the catalog and use the
total rate in the declustered catalog as background rate (Ogata 1998); (iii) weight-
ing each event by the probability that it is a background event (Zhuang et al. 2002,
2004); and (iv) Ogata (2004) introduced a Bayesian smoothness prior on tessellation
grids to estimate the spatial variation of the background and the model parameters
at the same time. In this study, we use the third method because of its simplicity
together with unbiased estimates of sufficient precision.

Using the method described in the last paragraph of Section 3.2, once a back-
ground process is obtained, we can estimate the background intensity by applying a
smoothing technique to the background catalog. Rather than repeating the thinning
procedure and the kernel estimation procedure many times to get an average esti-
mate of the background intensity, we can directly estimate the average by weighting
all the events with their corresponding background probabilities, i.e.,

µ̂(x, y) =
1

T

∑
i

ϕikdi(x− xi, y − yi), (25)

where i runs over all of the events in the whole process, T is the length of process
duration, and kd is the Gaussian kernel function with a bandwidth d. The variable
bandwidth di is defined in the same way as in (24).

http://www.corssa.org/glossary/#seismicity_rate
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3.4 Iterative algorithm

Sections 3.1 to 3.3 give us the method for estimating any one of the following three
things when the other two are known: the background rate µ, the model parameters
θ, and the background probabilities ϕi. In most cases, we have none of them but
a catalog of earthquakes. We can use the following algorithm to estimate them
simultaneously.

Algorithm A: stochastic declustering

A1. Given a fixed np and dmin, say 5 and 0.05 degree (roughly equivalent to 5.56 km
on Earth’s surface, which is close to the location error of earthquakes), calculate
the bandwidth dj for each event (tj, xj,Mj), j = 1, 2, · · · , N .

A2. Set ` = 0, and u(0)(x, y) = 1.
A3. Using the maximum likelihood procedure (see, Ogata 1998), fit the model with

conditional intensity function

λ(t, x, y) = νu(`)(x, y) +
∑
i: ti<t

κ(Mi)g(t− ti)f(x− xi, y − yi;Mi) (26)

to the earthquake data, where κ, g and f are defined in (10), and ν is the
relaxation coefficient, introduced to speed up the convergence of the iterations.

A4. Calculate ρji, ρi and ϕi for each j < i and i = 1, 2, · · · , N .
A5. Calculate µ(x, y) from (25) and record it as u(`+1)(x, y).
A6. If max |u(`+1)(x, y) − u(`)(x, y)| > ε, where ε is a given small positive number

(i.e., on the order of 10−6), then set ` = `+ 1 and go to step A3; otherwise, take
νu(`+1)(x, y) as the background rate and also output ρij, ρi and ϕi.

Example 1 Fitting ETAS model to the central Japan region
We use the earthquake data from the central-western Japan region from the

hypocenter catalog compiled by the Japan Meteorological Agency (JMA; see Fig.
1). We selected data for the period 1926-1995 in the rectangular area 34 ∼ 39◦N
and 131 ∼ 140◦E with magnitudes MJ ≥ 4.0 and depths ≤ 100km.

The space-time ETAS model equipped with the spatial response (18) is fit to the

above dataset. The MLEs for this region are Â = 0.020 event/(deg2 ·day), α̂ = 1.135,

ĉ = 0.040 days, p̂ = 1.15, and d̂ = .0010/deg2. Figures 1 (a)-(d) show estimates of
the spatial variations of total intensity, clustering intensity, background intensity
and relative clustering effect, respectively. We can see that the clustering effects
arising from typical aftershocks are eliminated in the estimates of the background
intensity in Figure 1(d). In contrast, the background rates are almost the same as
the total intensities in the Wakayama and Ibaraki regions, which show almost pure
spatial occurrence of nonclustered events.

www.corssa.org
http://www.corssa.org/glossary/#hypocenter


Basic models of seismicity: Spatiotemporal models 11

(a) (b)

10−5

10−4

10−3

0.01

0.1

1

10

100

1000

132 134 136 138 140

33

34

35

36

37

38

39

40

10−5

10−4

10−3

0.01

0.1

1

10

100

1000

132 134 136 138 140

33

34

35

36

37

38

39

40

(c) (d)

10−5

10−4

10−3

0.01

0.1

1

10

100

1000

132 134 136 138 140

33

34

35

36

37

38

39

40

0.2

0.4

0.6

0.8

1.0

132 134 136 138 140

33

34

35

36

37

38

39

40

Fig. 1 Estimated seismicity rate of Mj ≥ 4 earthquakes in central Japan (unit: events/(deg2· year): (a) total, (b)
clustered, and (c) background seismicity. (d) Clustering coefficient (ratio of clustered to total seismicity rate).

4 Stochastic reconstruction

Stochastic reconstruction was introduced to help classify earthquake events in a
catalog into different family trees. In testing hypotheses associated with earthquake
clustering features, such classification tackles the difficulties caused by the compli-
cated mixture of the background seismicity and different earthquake clusters in both
space and time. This algorithm is outlined below.

Algorithm B: Stochastic classification of earthquake clusters [Zhuang et al. (2002),
Zhuang et al. (2004)].

B1. Calculate ϕi and ρji by using Algorithm A, where i = 1, 2, · · · , N and j =
1, 2, · · · , i− 1. Here, N is the total number of events.

B2. For each event i, i = 1, 2, · · · , N , generate a random variable Ui uniformly
distributed on [0, 1].
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B3. For each i, let

Ii = min{k : ϕi +
k∑
j=1

ρji ≥ Ui and 0 ≤ k < i}.

If Ii = 0, then select i as a background or initial event; else, set the ith event to
be a direct offspring of the Iith event.

We can repeat Algorithm B many times to get different stochastic versions of
separations of the earthquake clusters. The non-uniqueness of such realizations il-
lustrates the uncertainty in determining earthquake clusters, and thus repetition
can help us to evaluate the significance of some properties of seismicity clustering
patterns. However, we can also implement these tests by working with the proba-
bilities ϕj and ρij directly. In the coming sections, we will show how to use these
probabilities to reconstruct the characteristics associated with earthquake clustering
features, using the Japanese JMA catalog as an example. The same reconstruction
procedures will be also applied to a simulated catalog for comparison.

Example 2 Stochastic declustering for the central Japan region Figure 2
shows a stochastically declustered version of the JMA catalog and illustrates the
thinning procedure and the stochastic declustering algorithm, using the same data
as in Example 1.

Example 3 Location distributions of earthquake clusters
In the early studies of the space-time ETAS model, both scaled Gaussian spatial

response function (Model 2, Eq. 15) and scaled power-law spatial response (Model
4, Eq. 17) were adopted by Ogata (1998); Zhuang et al. (2002, 2004) as the spatial
response function. From the viewpoint of hazard mitigation, it is an important
question which of the above functions is appropriate for modeling seismicity, i.e.,
whether the aftershock activity decays quickly over short spatial ranges as in Model
2, or decays in long distances as in Model 4. Ogata (1998) found that the second one
fit the data better than the first one by using the AIC model selection procedures.
Here we obtain the same conclusion from simple histogram techniques.

Define the transformed distance between a triggered event j and its direct an-
cestor, assumed i, as

rij =

√
(xj − xi)2 + (yj − yi)2

D2 exp[α(mi −m0)]
. (27)

From (15) and (17), rij has a density function of

fR(r) = 2re−r
2

, r ≥ 0; (28)

www.corssa.org
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(a) (b) (c)

(d) (e) (f)

Fig. 2 A realization of stochastic declustering for the central Japan region (MJ ≥ 4). (a), (b), and (c) are maps

of epicenter locations of all the earthquakes, the background events and the clustering events, respectively. (d), (e),

and (f) are space-time plots of occurrence times against latitudes for all the earthquakes, the background events
and the clustering events, respectively.

and

fR(r) =
2r(q − 1)

(1 + r2)q
, r ≥ 0; (29)

for Model 2 and Model 4, respectively. The distribution with a density of (28)
is called a Rayleigh distribution. On the other hand, fR(r) can be reconstructed
through

f̂R(r) =

∑
i,j ρijH(∆r/2− |rij − r|)

∆r
∑

i,j ρij
, (30)

where ∆r is the bin width and H denotes the Heaviside function. The comparison
between f̂R and fR for the two models are shown in Figure 3. It can be seen that,
when Model 2 is used, the reconstructed probability density of the transformed
distances between the ancestors and the direct offspring is quite different from the
theoretical one. When Model 4 is used, the reconstructed probability density is
very close to the theoretical one. These results confirm that the aftershocks show
a long range rather than a short range decay in space (Ogata 1998; Console and
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Fig. 3 Reconstruction results for the probability density functions (p.d.f.s) of the standardized triggering distances
f̂R(r) in equation (30) (circles) by using Model 2 (left panel) and Model 4 (right panel). The theoretical curves of

fR(r) in equations (28) and (29) are plotted in solid lines.

Murru 2001; Console et al. 2003). These results also imply the robustness of the
reconstruction method because one gets a reconstructed probability density function
which is very close to the corresponding function in Model 4, even if an improper
model like Model 2 is employed.

5 Further reading on the ETAS model

1. Criticality. The ETAS model is a branching process, and thus its stability is
also related to the concept of criticality. For the ETAS model, the criticality
parameter is ρ =

∫
κ(m) s(m) dm. When ρ < 1 the whole process is stable,

stationary and ergodic; if ρ ≥ 1, the population of the process in unit time
increases monotonically with time and finally explodes. Detailed discussions can
be found in Helmstetter and Sornette (2002), Zhuang (2003), and Zhuang and
Ogata (2006).

2. Relation to foreshocks. It is an interesting question whether foreshocks can be ex-
plained by a clustering model for aftershocks, i.e., whether foreshocks are main-
shocks whose aftershocks happen to be bigger. Studies by Helmstetter and Sor-
nette (2003a), Helmstetter et al. (2003), Felzer et al. (2004), Zhuang and Ogata
(2006), Zhuang et al. (2008), Christophersen and Smith (2008), Brodsky (2011)
and Marzocchi and Zhuang (2011) suggested that the probability of foreshock
phenomena does not exceed the probability of foreshock expected by an ETAS-
like generic clustering model.

3. Relation to B̊ath’s law. B̊ath’s law (B̊ath 1965) states that the median of the
magnitude difference between a mainshock and its largest aftershock is around
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1.2. Utsu (1957) expressed the median of this difference as a linear function of the
mainshock magnitude. Helmstetter and Sornette (2003b); Saichev and Sornette
(2005b); Zhuang and Ogata (2006); Vere-Jones and Zhuang (2008) showed in dif-
ferent ways that B̊ath’s law can be explained as a double exponential distribution
generated by the ETAS model.

4. HIST-ETAS model. Ogata et al. (2003) and Ogata (2004) developed a hierar-
chical space-time ETAS model to describe the difference of seismicity clustering
structures at different locations. He assumed that each parameter in the model
is a function of location, which has a smoothness prior. He developed powerful
Bayesian tools with penalized likelihoods to estimate the changes of clustering
characteristics in the form of spatial variation of model parameters.

5. Influence of small earthquakes. In the formulation of the ETAS model, the trigger-
ing effect from events smaller than the cut-off magnitude is ignored. The problem
was first studied by Sornette and Werner (2005a,2005b). Ignoring the triggering
effect may influence the conclusion of the study. Here we refer to Werner (2007);
Zhuang et al. (2008); Wang et al. (2010) for details.

6. Impact of anisotropy of earthquake clusters. Aftershock clusters of larger main-
shocks are usually not isotropic around the epicenter of the mainshock but aligned
along the mainshock rupture. To account for anisotropy, Ogata (1998), Kagan and
Jackson (1995), Helmstetter et al. (2006) and Werner et al. (2011) used elliptical
aftershock distributions. Hainzl et al. (2008) demonstrated by means of ETAS
simulations that ignoring this fact can lead to a biased parameter estimation, in
particular, to an underestimation of the α-parameter.

7. Self-similar ETAS models. Vere-Jones (2005) developed a self-similar ETAS model
to avoid the problems caused by the cut-off magnitude in the ETAS model and en-
able fully self-similar features. Because of the missing data problem of immediate
aftershocks and small events, however, this model until now remains in theoret-
ical developments (see also, Saichev and Sornette 2005a), and has not yet been
applied to real seismicity data. Another development to introduce self-similarity
is the branching aftershock sequence (BASS) model (e.g., Turcotte et al. 2007;
Holliday et al. 2008).

8. Earthquake forecasts. The ETAS model has been used for short-term (one-day)
or real-time earthquake probability forecasts. There have been many versions,
e.g., Vere-Jones (1998); Helmstetter et al. (2006); Werner et al. (2011); Zhuang
(2010); Console et al. (2006, 2007, 2008, 2010); Marzocchi and Lombardi (2009);
Woessner et al. (2011).
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6 The EEPAS model and the double branching model

The EEPAS (Every Earthquake is a Precursor According to Scale) was developed
by Evison and Rhoades (2004) and Rhoades and Evison (2004) in the study of
foreshock swarms. Its conditional intensity,

λ(t, x, y,m) = µλ0(t, x, y,m) +
∑
i:ti<t

wi η(mi) r(m|mi) f(t− ti) g(x− xi, y − yi | mi)

(31)
has a similar form as the ETAS model but is very different in detail. The conditional
intensity function is not applied to the whole catalog but only for the events above
a second higher threshold, while the summation is taken over all the events above a
primary lower threshold. That is to say, this model could be regarded as a self- and
mutually exciting process: the target process is of the events above the second higher
threshold, and the external process is of the events between the primary and the
secondary thresholds. In addition, f here takes the form of the lognormal density,
and g and r take the form of normal densities, i.e.,

f(u|mi) =
1

uσT
√

2π
exp

[
−(log u− aT − bTmi)

2

2σ2
T

]
, (32)

g(x, y|mi) =
1

2πσ2
A 10mi bA

exp

[
− x2 + y2

2σ2
A 10mi bA

]
, (33)

r(m|mi) =
1

σM
√

2π
exp

[
−(m− aM − bMmi)

2

2σ2
M

]
, (34)

where aT , bT , σT , bA, σA, aM , bM , and σM are model parameters to be estimated. The
weights wi are usually set to 1, but it has also been suggested to set wi to the
probability that the ith event is a background event, which could be obtained from
an initial stochastic declustering using the ETAS model.

This model seems to produce high average probability gains or entropy scores for
moderate term forecasts of moderate to large events. Here we refer to Rhoades and
Evison (2004) for detailed applications.

The double branching model was proposed by Marzocchi and Lombardi (2008).
In this model, the triggering between earthquakes is divided into 2 steps: one is the
short-term clustering due to the elastic response of the upper layers of the Earth,
which can be well represented by the ETAS model; and, the other is the interaction
among events over longer time-space scales. The conditional intensity of this model
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takes the form,

λ(t, x, y) = µ2(x, y) +
∑
i:ti<t

[
K1 eα1(Mi−M0)

(t− ti + c)p
C1

(r2
i + d2

1)q1

]
+
∑
i:ti<t

[
K2 eα2(Mi−M0)e−(t−ti)/τ C2

(r2
i + d2

2)q2

]
(35)

whereK1, K2, α1, α2, c, p, τ, d1, d2, q1 and q2 are model parameters, C1 and C2 are nor-
malizing constant such that C1

∫∫
(r2
i+d

2
1)−q1 dx dy = 1 and C2

∫∫
(r2
i+d

2
2)−q2 dx dy =

1. Marzocchi and Lombardi (2008) used a two-step approach to estimate the model:
they firstly carried out Algorithm A to obtain the background probabilities by us-
ing the stochastic declustering method, and then fit a self-exciting model with the
second summation term in (35) to the catalog of background events. They found
that the background seismicity, obtained by removing short-term clustering , is
characterized by a second-step long-term clustering with a characteristic time that
is compatible with post-seismic relaxation.

7 Summary

This article presents an overview of the spatiotemporal models for seismicity, with
an emphasis on some powerful techniques associated with the ETAS model. As
can be seen in the article, the most important things are not what the model can
describe, but rather the phenomena that the model cannot describe. That is to say,
one of the main outcomes of model building is determining aspects of the observed
process that the model cannot describe. We introduce the basic techniques of how
to decompose the earthquake clusters with uncertainty in the form of probabilities,
and how to use these probabilities to find the difference between real data and the
model. In summary, even though they are more difficult to implement and to apply
to earthquake data, spatiotemporal models are much more powerful in analyzing
seismicity than their simple temporal-only counterparts.
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