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Past studies have shown that crime events are often clus-
tered. This study proposes a spatiotemporal Hawkes-type
point process model, which includes a background compo-
nent with daily and weekly periodization, and a clustering
component that is triggered by previous events. We gener-
alize the nonparametric stochastic reconstructionmethod
so that we can estimate each component in the background
rate and the triggering response that appears in themodel
conditional intensity: the background rate includes a daily
and a weekly periodicity, a separable spatial component,
and a long-term background trend. Two relaxation coeffi-
cients are introduced to stabilize and fasten the estimation
process. This model is used to describe the occurrences of
violence or robbery cases in Castellon, Spain, during two
years. The results show that the robbery crime is highly in-
fluenced by the daily life rhythms, revealed by its daily and
weekly periodicity, and that about 3% of such crimes can be
explained by clustering. Further diagnostic analysis show
that the model could be improved by considering the fol-
lowing ingredients: (1) The daily occurrence patterns are
different between weekends and working days; (2) in the
city center, robbery activity shows different temporal pat-
terns, in both weekly periodicity and long-term trend, from

Abbreviations:M-L,Marsan and Lenglineé.
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other suburb areas.
K E YWORD S
crime, edge effect correction, Hawkes process, kernel estimate,
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1 | INTRODUCTION1

Point process modeling is a natural tool when describing the process of discrete events that occur in a continuous space,2

time or a space-time domain, such as urban fires, wild forest fires, crimes, earthquakes, diseases, tree locations, animal3

locations, communication network failures, etc. Depending on the type of the domain where the events occur, point4

processmodels are classified into two classes: spatial point processes and spatiotemporal/temporal point processes.5

The difference between these two types of models is that the latter ones have a special evolutionary time axis, based6

onwhich events can be sorted according to their chronological order and sharemany common features as time series7

sequences. When a property or a characteristic can also be attached to each event, such as the magnitude of an8

earthquake or the burned area of a wild fire, the point process is then called amarked point process.9

Among the different types of point processes, clustered point processes have attractedmany interests of mathe-10

maticians and statisticians. Typical clustering processes include theNeyman-Scott process (Neyman and Scott, 1953,11

1958), which has been used for describing the distribution of locations of galaxies in the universe, and the Barlette-Lewis12

process to model the rain fall process (Bartlett, 1963; Lewis, 1964). Many spatiotemporal/temporal clustered point pro-13

cesses can be categorized into the Hawkes self-exciting process (Hawkes, 1971b,a; Hawkes andOakes, 1974), including14

the epidemic-type aftershock sequencemodel (ETAS) for earthquake occurrence (e.g., Ogata, 1988, 1989, 1998; Zhuang15

et al., 2002). The basic assumption of this type of models is that the process consists of two subprocesses, a background16

subprocess considered as a Poisson process, which can be inhomogeneous in space and/or nonstationary in time, and a17

triggered subprocess composed by the exciting effect from all the events that occurred in the past. In other words, once18

an event occurs in the process, nomatter whether it is a background event or an event excited by others, it excites a19

process of its own direct offspring according to some probability rules. Many powerful tools have been developed for20

the Hawkes process, such as stochastic declustering, stochastic reconstruction, Expectation-Maximization algorithm,21

first- and higher-order residuals, andBayesian analysis, aswell as the theories associatedwith the asymptotic properties22

(see a review by Reinhart, 2018)23

Themost common tools to predict crimes include “hot-spotting” (e.g. Bowers et al., 2004; Ratcliffe, 2004; Levine,24

2017), “near-repeats” (e.g., Townsley et al., 2003), “leading indicator” regression (e.g., Cohen et al., 2007), and “risk25

terrain” (e.g., Caplan and Kennedy, 2016 ) models. The “hot-spotting” models produce static maps of locations where26

crimes tend to occur. “Near-repeats” analysis uses methods borrowed from epidemiology to test whether the local risk27

of crime elevates at a location immediately after a crime occurs and how/when the risk decays back to the baseline28

level. The “leading indicator” regression looks for covariates that can be used as local risk indicators of future serious29

crimes. “Risk terrain” modeling identifies the risks that come from particular features of a landscape andmodels how30

they co-locate to create unique behavior settings for crime.31

Hawkes-type point-process modeling of crimewas proposed byMohler and others in a series of papers (Mohler32

et al., 2011, 2015;Mohler, 2014; Rosser and Cheng, 2016). By adopting the formulation of the Hawkes process, Mohler33

et al.’s model incorporates the time-varying hot spots and near-repeats with the assumption that every crime induces a34

locally higher risk of crimewhich decays in space and time. Reinhart and Greenhouse (2018) considered a background35

with simple spatial covariates. Since parametric models are difficult to construct for data where empirical studies36
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are insufficient, nonparametric and semi-parametric estimationmethods for the Hawkesmodel have been developed.37

Marsan and Lengliné (2008) made use of the stochastic declustering technique proposed by Zhuang et al. (2002, 2004)38

and Zhuang (2006) and proposed a so-called “model-independent stochastic declustering (MISD)” method, which is a39

nonparametric estimationmethod of an ETAS-typemodel (Ogata, 1988, 1998) for the earthquake occurrence. This40

method has been introduced at the same timewhen point process modeling was used for analyzing crime data for the41

first time (Mohler et al., 2011) followed by improvements from other authors (e.g., Johnson et al., 2018). In a parallel line,42

several authors have followed the path of spatiotemporal log-Gaussian Cox processes tomodel crime data, with the43

main focus on surveillance analysis to detect emergent spatiotemporal clusters of crimes (e.g., Rodrigues andDiggle).44

However, in these studies of crime data based onHawkes-type point processes, the periodic components in the45

background rate are not considered. Since criminals are also human beings, their behaviors should be controlled by46

their biological clock and could be influenced by the periodic activity of the society (Felson and Boba, 2010). Thus,47

periodicity, for instance, daily periodicity andweekly periodicity, should be taken into account when building amore48

precisemodel. Shirota and Gelfand (2017) used a log-Gaussian Cox process with circular time tomodel the daily and49

weekly periodicities of crimes in the city of San Francisco. Since the Cox point process is only a first-order intensity50

model, interactions among crime events were not counted.51

The aim of this study is to analyze crime data by using an extended semi-parametric Hawkesmodel. Different from52

past studies, where the excitation effect has been emphasized, we focus on disentangling the periodic components53

from the long-term trend in the background rate. The reason for such a separation is straightforward: crime behavior54

is influenced by the criminal’s biological clock and the rhythms of our social life. Consequently, we generalize the55

stochastic reconstruction technique, which has been used to estimate Hawkes-typemodels with a simple background56

rate, by considering the theory of residual analysis for point processes, so that different periodic components can be57

extracted from the background rate. In this study, kernel estimation, which is straightforward to implement, is used58

for estimating all background and clustering components. In the estimation procedure, to stabilize the algorithm, we59

introduce two so-called relaxation parameters, which quantify the overall background rate and clustering effect. We60

call the proposedmodel semi-parametric since these two relaxation parameters can be estimated by usingmaximum61

likelihood.62

This article is organized as follows. Section 2 gives a brief description of the data. Section 3 provides the concepts63

and statistical modelingmethodologies related to the Hawkes process. The estimation procedure comes in Section 4.64

Section 5 presents the results of the statistical analysis, includingmodel fitting and a diagnostic analysis to verify the65

hypotheses related to themodel assumptions. Finally, the conclusions are summarized in Section 6.66

2 | DATA67

In this study, we analyze the robbery-related violence data in Castellon city, Spain, during the years of 2012 and 2013.68

The data reports geo-referenced coordinates of phone calls received by the Police station in the city of Castellon from69

January 2012 to December 2013. Castellon is a mediterranean city of around 180000 inhabitants. The listed calls70

were received at the local Police call center or transferred by 112 emergency service to the local Police call center.71

Geo-codification was performed indirectly by local officials based on precise address information provided by the72

callers. The calls comprise up to nine different types of crimes or anti-social behavior categories, but we here only focus73

on robbery-related violence data, comprising a total number of 5089 events happening in the streets of Castellon. The74

city of Castellon is divided into 108 census tracks with an overall surface of 108.6 km2. Figures 1 and 2 show several75

two- and three-dimensional plots of the events in the city to provide a first rough idea of the type of data that we are76
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analyzing.77

3 | MODEL AND METHODOLOGY78

3.1 | Hawkes process79

The Hawkes process describes the excitation mechanisms among a series of events that occur in a continuous time80

domain or in a spatiotemporal domain. A point process can be completely defined by its conditional intensity. For the81

purely temporal case, the conditional intensity is defined by82

λ(t ) = lim
∆↓0

1

∆t
Pr {N ([t , t + ∆)) = 1 | Ht } (1)

whereHt denotes theσ-algebra generated by the observational history of the processN before time t but not including83

t . A temporal Hawkes process, sayN = {t i : i ∈ Ú}withÚ being the set of all integers, has a conditional intensity of the84

form (Hawkes, 1971a,b)85

λ(t ) = µ +
∫ t−

−∞
g (t − u)N (du) = µ + ∑

i :t i <t
g (t − t i ), (2)

where µ is the occurrence rate of spontaneous events (also called background events), and g (t ) is the occurrence rate86

of direct offspring generated by an event occurring at 0. Note this indicates that both µ and g are nonnegative. The87

criticality parameter, which is the average number of direct offspring per ancestor, is given by88

ρ =

∫ ∞

0
g (u)du . (3)

If ρ < 1, this parameter is identical to the branching ratio, the proportion of non-spontaneous events in the whole89

process. In general, these two quantities are different (see Zhuang et al., 2013, for details).90

TheHawkes process can be easily extended to the spatiotemporal version91

λ(t , x ) = µ(x ) +
∫
Òd ×(−∞,t−)

g (t − s, x − u)N (ds × du) (4)

where x denotes the locations in the space ofÒd , µ(x ) ≥ 0, and g (t , x ) ≥ 0 for all x and t . It is can also generalized to the92

multivariate case where, if we have K types events in total, each type has a conditional intensity93

λk (t , x ) = µk (x ) +
K∑
`

∫
Òd ×(−∞,t−)

g` ,k (t , x ; s,u)N` (ds × du), (5)

for k = 1, · · · ,K , where µk (x ) represents the occurrence rate of spontaneous events (also called background) for type-k94

events, and g` ,k (t , x ; s,u) is the occurrence rate of events that are excited by a type-` event at (s, u). Again we assume95

µk (x ) and g` ,k (x ) are nonnegative for k , ` = 1, 2, · · · ,K .96

Given observation data of crime events in an observational space-timewindow S ×T , for a parametric Hawkes97
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F IGURE 1 Basic information of robbery-related violence in Castellon, Spain, 2012-2013: (a) Spatial locations, (b)
y -t coordinates, (c) t -x coordinates, and (d) cumulative numbers against times. The rainbow colors show the occurrence
times of the events, with red-colored points representing the earliest events andmagenta ones the latest.
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F IGURE 2 A 3D plot of robbery-related violence in Castellon, Spain, 2012-2013. The rainbow colors show the
occurrence times of the events, with red-colored points representing the earliest events andmagenta ones the latest.
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model, one can usemaximum likelihood estimation to estimate themodel parameters, i.e.,98

θ̂ = argθ max logL(·; θ)

= argθ max


∑
i : (t i ,xi ,yi )∈S×T

logλ(t , x , y ; θ) −
∫
T

∬
S
λ(t , x , y ; θ)dx dy dt

 . (6)

Here we refer to Chapter 7 of Daley and Vere-Jones (2003) for the derivation of the standard likelihood function for99

point processes that are specified by conditional intensities.100

3.2 | Stochastic declustering and reconstruction101

Consider a Hawkes process with conditional intensity102

λ(t , x ) = µ(t , x ) +
∑
k :tk <t

g (t − tk , x − xk ), (7)

where µ(t , x ) is the background rate, which is different from the corresponding term in (4) as it allows to be time103

dependent, and g (t , x ) is the occurrence rate triggered by an event at time 0 and location at the origin.104

The probability that an event, say j , is a background event, i.e., background probability, is given by105

ϕj = Pr{Event j is a background event} = µ(t j , xj )
λ(t j , xj )

(8)

and the probability that event j is triggered by another event i , i < j , is106

ρi j = Pr{Event j is triggered by i } = g (t j − t i , xj − xi )
λ(t j , xj )

. (9)

It is easy to see107

ϕj +

j−1∑
i=1

ρi j = 1, for all j . (10)

Another explanation for the above equation is that, once an event occurs at (t , x ), we can say that at (t , x ) we have108

observedϕj background events and that, for each i = 1, · · · , j − 1, event i triggers ρi j direct offspring at (t j , xj ). In this109

way, event j is sliced into background and offspring from previous events (Zhuang et al., 2004). Consequently, the above110

treatment provides a nonparametric way to estimate functions µ(·, ·) and g (·, ·). For example, g (·, ·) can be estimated by111

ĝ (t , x ) =
∑
i ,j ρi j I ( |t j − t i − t | < δt ) I ( |xj − xi − x | < δx )

4δt δx
∑
i ,j ρi j

(11)

where the denominator is for normalizing purposes, and δt and δx are two small positive numbers. µ(·, ·) can be also112

estimated through, e.g., a weighted kernel estimation as follows113

µ̂(t , x ) =
∑

ϕi Zhx (x − xi ) Zht (t − t i ), (12)
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where Zh is the Gaussian kernel with bandwidth h, hx and ht are bandwidths used for the smoothing in space and time,114

respectively, andϕi is defined in (8).115

In the above, when estimating µ(t , x ) and g (t , x ), we need to know ϕi and ρi j , and when estimating ϕi and ρi j ,116

we need to know µ and g . Such a loop can be solved by an iterative algorithm. Given an observed process of events117

{(t i , xi ) : i = 1, · · · , n } in a time-space windowT × S , by assuming some initial guess of µ and g , we obtainϕi and ρi j , for118

all possible i , j . Then we estimate the background rate µ and each component in the clustering part g by usingϕi and ρi j ,119

through some nonparametric methods, for example, kernel estimation or histogram. Once µ and g are updated, we go120

back to the step of calculatingϕ, or stop if convergence is reached.121

3.3 | OntheMarsan-LenglinéestimationalgorithmandMohler’s analysis ofburglarydata122

in Los Angeles123

The idea of the stochastic reconstruction algorithm firstly appeared in Zhuang et al. (2004) and Zhuang (2006) and it124

was then used byMarsan and Lengliné (2008) (M-L). Mohler et al. (2011) introduce it for the analysis of crime data. It125

is worthwhile tomention that in theM-L algorithm,M-L assumed that g is a stepwise constant function and theMLE126

yields a histogram estimation. In theM-L algorithm, µ is assumed to be constant throughout the whole observational127

space-time range, in order not to solve a non-fully-ranked equation system.128

Mohler et al. (2011) analyzed the break-in burglary data from the Los Angeles Police Department. Their dataset129

consisted of 5376 reported residential burglaries in an 18 km× 18 km region of San Fernando Valley, Los Angeles during130

2004–2005. They used amodel with conditional intensity131

λ(t , x , y ) = ν(t )µ(x , y ) +
∑
k :tk <t

g (t − tk , x − xk , y − yk ) (13)

InMohler et al. (2011), the background rate is assumed to be a function of space and time and they used kernel functions132

to smooth the estimates of both µ and g . In this article, we improve the above algorithm by (i) introducing relaxing133

parameters and (ii) considering periodic components in the background rates.134

3.4 | Model formulation135

We consider using the following space-time point process model to describe the crime data in Section 2, which is136

completely specified by a conditional intensity function137

λ(t , x , y ) = µt(t ) µd(t ) µw(t ) µb(x , y ) +
∫ t−

−∞

∬
S
g (t − s, x − u, y − v )N (du × dv × ds), (14)

where µt(t ), µd(t ), and µw(t ) represent the trend term, the daily periodicity, and the weekly periodicity in the temporal138

components of the background rate, respectively, µb(x , y ) represents the spatial homogeneity of the background rate,139

and g (t − s, x − u, y −v ) represents the subprocess triggered by an event previously occurring at location (u,v ) and time140

s . Note thatmodel (14) extendsmodels (4), (7), and (13) by enabling the background rate to include a spatial background141

pattern that can be separated from the periodicity effects and the long term temporal trend.142
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4 | ESTIMATION METHOD AND ALGORITHM143

We estimate µt, µd, µw, µb and g nonparametrically by using the stochastic reconstructionmethod proposed in Zhuang144

(2006). First, we rewrite the conditional intensity as145

λ(t , x , y ) = µ0 µt(t ) µd(t ) µw(t ) µb(x , y ) + A
∫ t−

−∞

∬
S
g (t − s) h(x − u, y − v )N (du × dv × ds), (15)

whereA and µ0 are relaxation coefficients to be estimated, the average values of µt(t ), µd(t ), µw(t ) and µb(x , y ) are all146

normalized to1, and g andh arep.d.f.s, i.e., ∫ ∞
0
g (s) ds = 1, and∬

S
h(u,v ) du dv = 1. Herewe separate the spatiotemporal147

clustering response function into a temporal and a spatial components in order to avoid the nonparametric estimation148

of a 3-dimensional function.149

Since the periodic components of the background rate in ourmodel formulation cannot be directly estimated by150

using the stochastic reconstructionmethod, we use the residual analysis method developed in Zhuang (2006) to solve151

this problem. The key point of residual analysis for temporal/spatiotemporal point processes is that the conditional152

intensity of a point process has the following property. Suppose that a spatiotemporal point process N is equipped with153

a conditional intensity λ(t , x ); for a predictable process f (t , x ), we have154

E
[∫
[T1,T2]×S

f (t , x )dN (dt × dx )
]
= E

[∫ T2

T1

∫
S
f (t , x )λ(t , x )dt dx

]
, (16)

for any given time interval [T1, T2] and area S , provided that the integral on either side exists, or that f is nonnegative.155

4.1 | Reconstructing background components156

Given a realization of the point process {(t i , xi , yi ) : i = 1, 2, · · · , n } in a time-space range [T1,T2] × S , where t (day)157

and (x , y ) (km) denote time and location, respectively, the long-term trend term µt(t ) in the background component can158

be reconstructed in the following way.159

Let

w (t)(t , x , y ) = µt(t ) µb(x , y )/λ(t , x , y )

and f (t , x , y ) = w (t)(t , x , y ) and substitute f into (16). Then, assuming that µt is smooth enough,160

∑
i

w (t)(t i , xi , yi ) I (t i ∈ [t − ∆t , t + ∆t ])

≈
∫ T2

T1

∬
S
w (t)(s, x , y )λ(s, x , y ) I (s ∈ [t − ∆t , t + ∆t ])ds dx dy

=

∫ t+∆t

t−∆t
µt(s)ds

∬
S
µb(x , y )dx dy

∝
∫ t+∆t

t−∆t
µt(s)ds

≈ 2µt(t )∆t , (17)
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where∆t is a small positive number. For ease of writing, define161

w
(t)
i
= µt(t i ) µb(xi , yi )/λ(t i , xi , yi ), (18)

then162

µ̂t(t ) ∝
∑
i

w
(t)
i
I (t i ∈ [t − ∆t , t + ∆t ]). (19)

Similarly, we can reconstruct the other components in the background rate as follows163

µ̂d(t ) ∝
∑
i

w
(d)
i
I

(
t i ∈

⋃
k ∈Ú
[t + k − ∆t , t + k + ∆t ]

)
, t ∈ [0, 1], (20)

164

µ̂w(t ) ∝
∑
i

w
(w)
i

I

(
t i ∈

⋃
k ∈Ú
[t + 7k − ∆t , t + 7k + ∆t ]

)
, t ∈ [0, 7], (21)

and165

µ̂b(x , y ) ∝
∑
i

ϕi I (xi ∈ [x − ∆x , x + ∆x ]) I (yi ∈ [y − ∆y , x + ∆y ]), (22)

where166

w
(d)
i

= µd(t i ) µb(xi , yi )/λ(t i , xi , yi ), (23)
167

w
(w)
i

= µw(t i ) µb(xi , yi )/λ(t i , xi , yi ), (24)
168

ϕi = µ0 µt(t i ) µd(t i ) µw(t i ) µb(xi , yi )/λ(t i , xi , yi ), (25)

and ∆t , ∆x , and ∆y are small positive numbers. In the above, the rescaled weights w (t)i , w (d)i , and w (d)i are the key169

quantities for reconstructing the long trend, the daily periodicity, and the weekly periodicity in the background rate.170

4.2 | Reconstructing excitation components171

To estimate g and h, we need to use the quadratic form in (??). First, let172

%
(
s (1),u (1),v (1), s (2),u (2),v (2)

)
=


g

(
s (2) − s (1)

)
h

(
u (2) − u (1),v (2) − v (1)

)
/λ

(
s (2),u (2),v (2)

)
, s (2) ≥ s (1);

0, otherwise. (26)
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It is clear that %
(
s (1),u (1),v (1), s (2),u (2),v (2)

)
is a deterministic function for any fixed

(
s (1),u (1),v (1)

)
, and, of course,173

predictable. Substituting f
(
s (1),u (1),v (1), s (2),u (2),v (2)

)
= %

(
s (1),u (1),v (1), s (2),u (2),v (2)

)
I (s (2) − s (1) ∈ [t − ∆t , t + ∆t ]174

into (16) yields175

∑
j

%
(
t i , xi , yi , s j ,u j ,vj

)
I (t j − t i ∈ [t − ∆t , t + ∆t ])

≈
∫ T2

T1

∬
S
%

(
s (1),u (1),v (1), s (2),u (2),v (2)

)
I

(
s (2) − s (1) ∈ [t − ∆t , t + ∆t ]

)
λ

(
s (2),u (2),v (2)

)
ds (2) du (2) dv (2)

≈ 2 g (t )∆t ×
∬
S
h

(
u (2) − u (1),v (2) − v (1)

)
du (2) dv (2)

∝ g (t ), (27)

Note that in the last step of the above equation, the integrals are functions that do not depend on time t or the spatial
location, and thus they are independent of (t i , xi , yi ). Therefore,∑

i

∑
j

%(t i , xi , yi , s j ,u j ,vj ) I (t j − t i ∈ [t − ∆t , t + ∆t ])

is approximately proportional to g (t ), i.e., g (t ) can be estimated by176

ĝ (t ) ∝
∑
i ,j

ρi j I (t j − t i ∈ [t − ∆t , t + ∆t ]) (28)

where177

ρi j = g (t j − t i ) h(xj − xi , yj − xi )/λ(t j , xj , yj ), i < j . (29)

Similarly,178

ĥ(x , y ) ∝
∑
i ,j

ρi j I (xj − xi ∈ [x − ∆x , x + ∆x ]) I (yj − yi ∈ [y − ∆y , y + ∆y ]), (30)

where∆x and∆y are small positive numbers.179

4.3 | Estimating relaxation coefficients180

Once µt, µd, µw, µb, g and h are estimated, we can update the relaxation coeffiecients, µ0 andA, throughmaximizing the181

likelihood function182

logL =
n∑
i=1

logλ(t i , xi , yi ) −
∫ T

0

∬
S
λ(t , x , y )dx dy dt . (31)

Denote

U =

∫ T

0

∬
S
µt(t ) µd(t ) µw(t ) µb(x , y )dx dy dt
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and

G =
∑
i

∫ T

t i

∬
S
g (t − t i ) h(x − xi , y − yi )dxdy dt .

The equations ∂

∂µ0
logL = 0 and ∂

∂A
logL = 0 give183

n∑
i=1

µt(t i ) µd(t i ) µw(t i ) µb(xi , yi )
λ(t i , xi , yi )

−U = 0, (32)
n∑
i=1

∑
j :t j <t i g (t j − t i ) h(xj − xi , yj − yi )

λ(t i , xi , yi )
−G = 0. (33)

The above equations can be solved by the following iteration system184

A(k+1) =
n −∑n

i=1 ϕ
(k )
i

G
, (34)

µ
(k+1)
0 =

n − A(k+1)G
U

, (35)

where185

ϕ
(k )
i

=
µ
(k )
0 µt(t i ) µd(t i ) µw(t i ) µb(xi , yi )

µ
(k )
0 µt(t i ) µd(t i ) µw(t i ) µb(xi , yi ) + A(k )

∑
j : t j <t i g (t j − t i ) h(xj − xi , yj − yi )

. (36)

4.4 | Smoothing estimates and correcting for edge effects186

To get robust reconstruction results and to ensure the convergence of the above iterative algorithm, instead of using187

histograms directly, we use kernel functions to smooth our estimates. That is to say, (19) to (22), (28) and (30) become188

µ̂t(t ) ∝
∑
i

w
(t)
i
Z (t − t i ; ωt), (37)

189

µ̂d(t ) ∝
∑
i

w
(d)
i

T∑
k=0

Z (t − t i + bt i c − k ; ωd), (38)

190

µ̂w(t ) ∝
∑
i

w
(w)
i

bT /7c∑
k=0

Z (t − t i + 7 · bt i /7c − 7k ; ωd), (39)

191

µ̂b(x , y ) ∝
∑
i

ϕi Z (x − xi ; ωx ) Z (y − yi ; ωy ), (40)
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192

ĝ (t ) ∝
∑
i ,j

ρi j Z (t − t j + t i ;ωg ), (41)

193

ĥ(x , y ) ∝
∑
i ,j

ρi j Z (x − xj + xi ; ωhx ) Z (y − yj + yi ; ωhy ), (42)

respectively, where Z (x ; ω) = 1√
2πω

exp
(
− x2

2ω2

)
is theGaussian kernel, and bx c represents the largest integer not bigger194

than x . In the above equations, andwhen no confusion arises, we abuse the notation and use ·̂ for the new estimates.195

An important issue with kernel smoothing is the edge effect. To correct for the edge effect, we finally adopt the196

following estimates197

µ̂t(t ) ∝
∑
i

w
(t)
i

Z (t − t i ; ωt)∫ T
0
Z (u − t i ; ωt)du

, (43)

198

µ̂d(t ) ∝
∑
i

w
(d)
i

∑T
k=0 Z (t − t i + bt i c − k ; ωd)∫ T

0
Z (u − t i ; ωd)du

, (44)

199

µ̂w(t ) ∝
∑
i

w
(w)
i

∑bT /7c
k=0

Z (t − t i + 7 · bt i /7c − 7k ; ωw)∫ T
0
Z (u − t i ; ωw)du

, (45)

200

µ̂b(x , y ) ∝
∑
i

ϕi
Z (x − xi ; ωx ) Z (y − yi ; ωy )∬

S
Z (u − xi ; ωx ) Z (v − yi ; ωy )dudv , (46)

201

ĝ (t ) ∝

∑
i ,j ρi j

Z (t−t j +t i ;ωg )∫ T −ti
0

Z (u−t j ;ωg )du∑
i I (t i + t ≤ T )

, (47)
202

ĥ(x , y ) ∝

∑
i ,j ρi j

Z (x−xj +xi ;ωhx ) Z (y−yj +yi ;ωhy )∬
S Z (u−xj +xi ;ωhx ) Z (u−yj +yi ;ωhy )dx dy∑
i I ((xi + x , yi + y ) ∈ S )

. (48)

In each of the above equations, the integral of the kernel function prevents “leaking out of masses” outside the spatial or203

temporal range of interest. The denominators in (47) and (48) are for repetition corrections, i.e., for howmany times the204

triggering effect at time lag t or the spatial offset (x , y ) is observed.205
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TABLE 1 Results from fitting themodel in equation (15) and three other models (see Section 5.1 for the details).
Parameters µ andA are the relaxation coefficients.

Model µ̂ Â logL
non-periodic Poisson 0.7920 NA -1335.07
periodic Poisson 0.7927 NA -1050.26

non-periodic & triggering 0.7710 0.02838 -1304.50
periodic & triggering 0.7713 0.02913 -920.81

4.5 | Iterative algorithm206

As explained in Section 3.1, when estimating µ, g , and h, we need to knowϕi and ρi j , and when estimatingϕi and ρi j , we207

need to know µ , g , and h. To estimate them simultaneously together with the relaxation parameters µ0 andA, we have208

designed the following iterative algorithm.209

Algorithm:210

Step 1. Set up initial values of µt, µd, µw, µbg, f , g , µ0 andA.211

Step 2. Calculatew (t)
i
,w (d)

i
,w (w)

i
,ϕi , and ρi j for all possible i and j , using (18), (23) – (25), and (29), respectively.212

Step 3. Estimate µt, µd, µw, µbg, f , and g using equations (43) to (48).213

Step 4. Estimate µ0 andA using (34) to (36).214

Step 5. Stop if the results are convergent; otherwise, go to Step 2.215

5 | DATA ANALYSIS216

We analyze robbery-related violence data in Castellon city, Spain, during the years of 2012 and 2013, as presented in217

Section 2. See Figures 1 and 2 for graphical illustrations of the data set.218

5.1 | Model fitting219

Wefit four models to the crime data that are given in Section 2: (1) a non-periodic but nonstationary Poissonmodel220

with λ(t , x , y ) = µ0 µt(t ) µb(x , y ), (2) a periodic Poissonmodel with λ(t , x , y ) = µ0 µt(t ) µd(t ) µw(t ) µb(x , y ), (3) a similar221

model as in Eq. (15) but without daily andweekly periodic effects, and (4) themodel in (15). In our analysis, we adopt222

bandwidths of 0.03, 0.5, and 10, with days as the temporal unit, in the estimation of the daily periodicity, weekly223

periodicity, and long-term background rate, respectively, for all the four models. These bandwidths are selected224

according to resolution requirement of each component. The estimates of parameters and likelihoods are listed in Table225

1. Since themodel with daily andweekly periodic effects is much better than the others, with differences of 414.26,226

129.55, and 383.69 in log-likelihood, we only discuss the full model in the following sections.227

The corresponding estimated surface for the spatial background rate µb(x , y ) and the other components are shown228

in Figure 3. The general trend (Figure 3a) indicates that there is a larger number of events occurring in the first year than229

in the second one. Also the occurrence rate of events keeps quite stationary throughout the second year. The weekly230

periodicity component (Figure 3b) indicates that the robbery events have a steady increase from Thursdays to Sundays231
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which is consistent to reality as it is the timewhenmore people are working andmoving around the city. In addition,232

we can identify two significant peaks of occurrences within a day (Figure 3c), corresponding to 12h – 14h (lunch time)233

and 19h – 22h (dinner time), which are again the periods whenmore people are in the streets. On the other hand, the234

occurrence rate of such crimes is relatively much lower around 4h to 10h in themorning, during which most people235

are resting. The reconstructed spatial and temporal response functions in the clustering component (Figures 3d and236

3e) imply that, once a crime occurs, it likely triggers another crimewithin the coming 3 days andwithin 100meters in237

distance.238

Here,A ≈ 0.03 implies that about 3% of the 5089 crime events (about 152 events), which should not be considered239

as a small number, can be explained by the triggering effect. Comparing to the results of the analysis of the burglary240

crimes in Los Angeles during the period of 2010 – 2012 in Mohler et al. (2011), the clustering effect in the robbery241

violence data seems much lower. In Reinhart and Greenhouse (2018), the proportion of clustering events in all the242

burglary crimes in Pittsburgh during 2011 to 2016 amounts to 47%. The reasonmight be that the same burglar watches243

and visits several neighboring houses within a short time span, while a robber always escapes from the crime spot244

quickly to avoid being caught. Another difference is the reconstructed pattern of the temporal response function. In245

Figure 4 inMohler et al. (2011), theremight be some periodicity in themarginal temporal response function, while our246

reconstructed one is monotone decreasing. A possible cause of this difference is that periodicity in the background is247

not considered inMolher’s model.248

5.2 | Diagnostics of themodel: Residual analysis249

One must keep in mind that it is difficult to find an ideal model for the observations at the beginning stage of the250

modeling. Thus, finding the advantages and the shortcomings of the current model is important for improving themodel251

formulation. Thus, after fitting amodel to some observational data, wemay ask some questions about the results. For252

example: (1) How to justify the goodness-of-fit of themodel? (2) Does the data patterns vary with space and time? (3)253

How to improve themodel formulation? Zhuang (2006) summarized the ideas of the residual analysis technique and254

provided some examples of finding the possible direction for improving the formulation of the Epidemic TypeAftershock255

Sequence (ETAS) model, which is widely used for analyzing, modeling and forecasting regional seismicity (Ogata, 1998;256

Zhuang et al., 2002). In this section, we carry out residual analysis to answer several questions related to the data.257

Transformed time sequence analysis258

Traditionally, residual analysis is usually done in the followingway. Givenapoint processN = {(t i , xi , yi ), i = 1, 2, · · · , n },259

which is determined by a conditional intensity λ(t ), the following transformation260

t i → τi =

∫ t i

0

∫
S
λ(u, x , y )dxdy du (49)

transforms N into a stationary Poisson process with a unit rate (standard Poisson process), namely, N ′ = {τi : i =261

1, 2, · · · , n }. The processN ′ is called the transformed time sequence (e.g., Ogata, 1988). The true λ(t , x , y ) is always262

unknown in real data analysis. If we replace λ(t , x , y ) by λ̂(t , x , y ), which is a good approximation of the truemodel, in263

the above equation, we can also obtain a transformed time sequence that is approximately a Poisson process of rate 1264

(the standard Poisson process). Thus, we can conclude that themodel does not fit the data well unless the transformed265

time sequence deviates significantly from the standard Poisson process.266

Confidence bands of the transformed time sequence have been studied byOgata (1988, 1989). In this study, this267

problem is treated from another viewpoint: since such a transformed time sequence is a standard Poisson process268
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for an ideal model, statistics related to the Poisson process can be used to construct the confidence band. Following269

Schoenberg (2002), the cumulative frequency curve (τ̂i = ∫ t i
0

∫
S
λ̂(u, x , y )dxdy du, i ) always connects (0, 0) and (T , n),270

where λ̂(u, x , y ) is the model estimated from the data in [0, T ] by using the maximum likelihood estimate and n =271

N ([0,T ]×S ). For each positive integer k , if k < n , the confidence interval for τk is the same as k Z , where Z is a random272

variable that obeys a beta distributionwith parameter (k +1, n − k +1); when k > n , τk can be approximated by a gamma273

distribution with a shape parameter k − n and scale parameter 1. Here we refer Schoenberg (2002) for details.274

The transformed time sequence for the analyzed data is plotted in Figure 4. Transformation in (49) approximately275

transforms the crime events into a stationary one. Around the transformed times of 530, 2400, 3250, and 4300, there276

seems to be some change point of the occurrence rate in the transformed time domain. This might be caused by the fact277

that kernel estimation is a bit over-smooth in detecting the change points of the long term background occurrence rate.278

Does the daily periodicity change in time or in space?279

To understand whether the daily periodicity pattern changes in time, we reconstruct the daily periodicity functions280

for each individual year of 2012 and 2013, as shown in Figure 5(a). We note that there are not significant differences281

between these two years. Similarly we reconstruct the daily periodicity for different seasons, different days of theweek,282

and different areas in the city, as shown in Figures 5(b) to (d), respectively. These results do not showmuch difference283

among different seasons. The biggest difference is the effect of the days of the week. From Figure 5(c) we can see that284

the daily effect for Sundays is quite flat, a valley around 4am and two peaks around 1pm and 9pm. There exists slight285

differences in the city center and the suburb area (Figure 5(d)): the occurrence rate is relatively higher at noon and286

evening and relatively lower in the early morning and in the afternoon in the center of the city than in the other areas.287

Does theweekly periodicity change in time or in space?288

We reconstruct the week periodicity for different years (Figure 6(a)) and different areas (Figure 6(b)). The results do not289

showmuch differences of weekly periodicity between years. However, the occurrence rate in the city center area gets290

much higher on Fridays.291

Does the long-term trend differ in different places?292

Figure 7 shows the reconstructed long-term trend component of the background rate. Even though there are two small293

rebounds about 420 and 640 days, the long-term background rate in the city center area decreases quicker in those two294

years than in the other suburb areas. Moreover, there is almost no difference among different suburb areas.295

Is the background rate separable in space and time?296

In themodel formulation, we have assumed that the background rate is separable in space and time. We reconstruct297

µb(x , y ) for the years of 2012 and 2013, namely µ̂b,′12 and µ̂b,′13 , respectively, and plot their difference ( µ̂b,′13 − µ̂b,′12) in298

Figure 8(a). For an easier comparison, we also plot the relative difference, (µ̂b,′13 − µ̂b,′12)/µ̂b , in Figure 8(b), where µ̂b is299

the estimate in themodel for the entire period. We see from these results that, even though it exists, the difference300

between µ̂b,′13 and µ̂b,′12 is negligible and that the assumption that the background rate is separable in space and time is301

reasonable.302

Is the clustering effect different in different places?303

It is also interesting to knowwhether the clustering effect differs between downtown and the suburb areas. A simple304

verification is to check whether the reconstructed g (t ) and f (x , y ) are different for the city center and other areas.305

These functions are plotted in Figures 9 and 10. The overall shapes of g and f are similar for the city center area and the306
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suburb area. Taking into consideration the fact that there are notmany triggered events, only less than 3% among all307

the events, for our estimation of these functions, it is not necessary to assume different temporal and spatial response308

functions for the city center and the suburb area, whichmight complicate our analysis. This also implies that our choice309

of using separable temporal and spatial response functions in ourmodel (15) is reasonable.310

Since the triggering effect is weak, we do not carry out the analysis of whether f and g vary in different time period.311

6 | CONCLUSIONS AND DISCUSSION312

In this study, we have proposed a spatiotemporal Hawkesmodel, whose background rate includes a long-term trend313

and periodicity, to describe the robbery-related violence in Castellon, Spain. To estimate themodel, a semi-parametric314

method is used to reconstruct the background and clustering components and to estimate their relative contributions.315

Comparing with previous studies, we have introduced the periodic terms in the background rate and estimated them316

through kernel estimates.317

The new stochastic reconstruction method developed in this study fits better to crime data and is simple to318

understand and to estimate, without requiringmuch prior knowledge of the studied phenomena. Using this method,319

we have analyzed and highlighted the existence of periodic components and the triggered effect in the process of the320

studied crime phenomena. In the estimation procedures of the background components and the excitation response321

functions, two relaxation parameters are adopted to stabilize and fasten the convergence.322

The final results show the following features of the behaviors of the robbery-related violence in Castellon: (1)323

Background dominates the whole process while the clustering effect only contributes about 3%. (2) The periodicity324

effect is strong in the background. (3) Residual analysis shows that crime activity is different during weekends from325

working days. (4) Downtown has different characteristics in crime activities from suburb regions.326

There are various possible ways of extending this research in the future. Here we list several possibilities. (1)We327

could consider the nonlinear Hawkes process (e.g.,Brémaud andMassoulié, 1996; Delattre et al., 2016; Torrisi, 2016,328

2017; Zhu, 2013, 2014, 2015; Chevallier et al., 2018), whose temporal version has a conditional intensity in the form of329

λ(t ) = Φ
(∫ t−

−∞
g (t − u)N (du)

)
, (50)

whereΦ is a locally integrable and left-continuous nonnegative function. (2) In this study, we used kernel estimates with330

fixed bandwidths to obtain all the components in themodel formulation. Also, in the comparison among results in Table331

1, themodel complexity is not accounted for. It is worthwhile to apply cross-validation to obtain the optimal bandwidths332

and to select themodel that best fits the data. (3) Other nonparametric estimates, such as Bayesian procedures with333

smoothness priors, tessellationmethods, etc., can be also incorporated into the proposedmethod. Careful and detailed334

comparisons should be done among thesemethods in order to find the best one for practical forecasting.335
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F IGURE 3 Output results: (a) spatial background rate µb(x , y ) (b) trend function, (c) weekly periodicity, (d) daily
periodicity, (e) temporal response function, and (f) spatial response function.
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F IGURE 4 Cumulative frequencies of crime events versus (a) original occurrence times and (b) transformed times.
The slopes of the dashed straight lines in both panels represent the average occurrence rates. The dashed curves in (b)
mark the 95% confidence bands for the transformed time sequence.
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(a) (b)

(c) (d)

F IGURE 5 Reconstructed daily periodicity functions µ̂d(t ) for (a) different years of 2012 and 2013, (b) different
seasons, (c) different days of the week, and (d) different areas of the city-center and the suburb.
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(a) (b)

F IGURE 6 Reconstructed weekly periodicity functions (a) for different years and (b) for city center and suburb
areas.

F IGURE 7 Reconstructed long-term trend for different areas.
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(a) (b)

F IGURE 8 Diagnostics of space-time separability of background rate: (a) Absolute difference between the
reconstructed background rates estimated by using data from 2012 and 2013 (the latter minus the former) and (b)
relative difference between them (the latter minus the former then divided by the background rate for the entire
dataset).
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F IGURE 9 Reconstructed temporal response of the triggering effect, ĝ (t ). The black, red and green curve are for all
the region, the city center area, and the suburb areas, respectively.
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(a) (b)

(c) (d)

F IGURE 10 Diagnostics of regional difference of the spatial response between city center and suburb areas. (a)
Reconstructed f for the city center area. (b) Reconstructed f for the suburb areas. (c) Related difference between the
spatial response function in (a) and (b). (d) Absolute difference between the spatial response function in (a) and (b).


