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Abstract5

Records of geophysical events, such as earthquakes and volcanic eruptions,6

are usually modeled as marked point processes. These records often have7

missing data, resulting in underestimation of the corresponding hazards.8

We propose a computational approach for replenishing missing data in the9

records of temporal point processes with time-separable marks. The basis of10

this method is that, if such a point process is completely observed, it can11

be transformed into a homogeneous Poisson process approximately on the12

unit square [0, 1]2 by a biscale empirical probability integral transformation13

(BEPIT). This approach includes three key steps: (1) Transforming the pro-14

cess onto [0, 1]2 using the BEPIT, and finding a time-mark range that likely15

contains missing events; (2) Estimating a new empirical distribution function16

based on the data in the time-mark range in which the events are supposed17

to be completely observed; (3) Generating events in the missing region. We18
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test this method on a synthetic dataset, and apply it to the records of vol-19

canic eruptions of the Hakone Volcano in Japan and the aftershock sequence20

following the 2008 Wenchuan Mw7.9 earthquake in Southwest China. The21

results show that this algorithm provides a useful way to estimate missing22

data and to replenish incomplete records of marked point processes. The23

replenished data provide more robust estimates of the hazard function.24

1 Introduction25

Many geophysical processes, such as earthquakes and volcanic eruptions,26

occur at random times and/or locations, and are often described naturally27

by point-process models (e.g., Vere-Jones, 1970; Zhuang et al., 2002; Wang28

and Bebbington, 2012, 2013). Point-process models and related theories are29

also widely used in many other fields, such as crime, disease, and fire (Diggle30

and Rowlingson, 1994; Schoenberg et al., 2007; Mohler et al., 2011). With the31

development of advanced technology for recording these natural and social32

phenomena, the amount of data has increased significantly. However, the33

degree of completeness of these records varies, and in many cases, small events34

are often missed in the early period of observation. For example, smaller35

aftershocks are less likely to be recorded than larger aftershocks during the36

period immediately following a large earthquake (Ogata and Katsura, 1993;37

Omi et al., 2013). Other examples include missing data in volcanic eruption38

records (Kiyosugi et al., 2015) and in the field of communication in social39

networks (Zipkin et al., 2015). Missing data limit our efficient use of these40

records, often resulting in biased estimates. However, statistical tools for41

analyzing incomplete point process data are not well developed.42
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Geophysicists have been searching for reliable methods to obtain more43

complete earthquake catalogs. For example, waveform-based detection meth-44

ods for small earthquakes within an aftershock sequence have been proposed45

(e.g., Enescu et al., 2007, 2009; Peng et al., 2007; Marsan and Enescu, 2012;46

Hainzl, 2016). However, even these methods cannot recover all missing after-47

shocks. An alternative is to switch to energy-based descriptions (Sawazaki48

and Enescu, 2014); that is, instead of regarding it as a process of events with49

different magnitudes, the process of earthquake occurrences is regarded as50

a stream of energies released by earthquakes. However, methods related to51

such descriptions remain underdeveloped.52

Based on the empirical law that the distribution of earthquake magni-53

tudes follows the Gutenberg–Richter magnitude–frequency relation (Guten-54

berg and Richter, 1944), Ogata and others investigated why events were55

missing from earthquake catalogs (Ogata and Vere-Jones, 2003; Iwata, 2008,56

2013, 2014). They used a Bayesian method to make probabilistic earthquake57

forecasts, with missing earthquakes taken into account (Ogata, 2006; Omi58

et al., 2013, 2014, 2015).59

In most of the aforementioned studies, when dealing with missing events60

in a point process, the full structure of the model or the distribution of61

marks are assumed to be known. However, owing to incomplete records and62

other reasons, on most occasions, the information available on the process63

or the mark distribution is limited. Thus, a preferable method for evalu-64

ating the missingness should be based on as few assumptions as possible,65

especially when the temporal structure and the distribution of marks are66

unknown. Zhuang et al. (2017) used a stochastic algorithm to restore miss-67

ing aftershocks in the aftershock sequences following several earthquakes in68
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Kumamoto, Japan (April 14, 2016, M6.5; April 15, 2016, M6.4; April 16,69

2016, M7.3). This method can be used to restore missing data in the records70

of a more general temporal point process with time-separable marks using71

information from the parts of the process that are completely observed. In72

Zhuang et al. (2017), the mathematical background is not well addressed. In73

this study, we explain in detail the mathematics related to this fast algorithm74

and discuss its asymptotic properties.75

In the following sections, we first introduce the biscale empirical prob-76

ability integral transformation (BEPIT) and then analyze the completely77

observed process with time-separable marks after the transformation. Based78

on the results of this transformation, we restore the empirical distributions79

from an incomplete record using an iterative algorithm. The algorithm is80

explained using a simulated dataset, and then consistency and asymptotic81

normality are derived. Finally, we apply the algorithm to investigate the in-82

complete eruption record of the Hakone volcano in Japan, and the aftershock83

sequence of the Wenchuan Mw7.9 earthquake that occurred in Southwest84

China on May 28, 2008.85

2 Concepts, methodology, and illustration86

2.1 Mark-separable temporal point process and biscale87

empirical probability integral transformation88

Mathematically, a marked temporal point process N is a random subset of89

discrete points on the space R ×M, say {(ti,mi) : i = 1, 2, · · · , n}, which90

includes a finite or countable number of elements, and satisfies the following91

two conditions (Karr, 1991): (a) for any bounded subset A ⊂ R, Pr{N(A×92

M) ≡ #[N ∩ (A ×M)] < ∞} = 1, where #[ ] represents the number of93
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elements in a set; and, (b) for each i, mi is a random variable on M. In our94

study, we assume: (a) the marks are continuous random variables, and (b)95

the point process is simple (i.e., Pr{maxt∈RN({t}×M) ≤ 1} = 1), such that96

there are no overlapping events on the time axis.97

A marked temporal point process is often specified by its conditional98

intensity function, which is defined by99

λ(t,m) dt dm = E [N([t, t+ dt)× (m,m+ dm) | Ht] , (1)

where Ht denotes the history of N up to time t, but not including t. The

conditional intensity can be decomposed as

λ(t,m) = λg(t) g(m|t),

where λg(t) =
∫
M λ(t,m) dm is called the conditional intensity of the ground100

point process Ng induced by N on R, defined by Ng(A) = N(A ×M), and101

g(m|t) is the probability density function of the event mark at time t. An102

important property of the conditional intensity is that if a temporal point103

process N has conditional intensity λ(t), then the transformation104

ti → τi =

∫ ti

0

λ(u) du (2)

transforms N into a Poisson process N ′ = {τi : i = 1, 2, · · · } (see, e.g.,105

Ogata, 1988; Schoenberg, 2003; Daley and Vere-Jones, 2003).106

For the above conditional intensity, when the mark distribution is sepa-107

rable from the occurrence times, i.e.,108

λ(t,m) = λg(t) g(m), (3)

the marks of this point process is said time-separable. Point-process models109

with time-separable marks have been widely used in many research areas. In110
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seismology, most practical versions of earthquake forecasting models explic-111

itly assume that the magnitude distribution is separable from time (see, e.g.,112

Ogata and Zhuang, 2006; Zhuang et al., 2002, 2004; Zhuang, 2011; Werner113

et al., 2011; Ogata et al., 2013). In volcanology, Bebbington (2014) suggested114

that there is not enough evidence of a universal dependence of eruption size115

on time. In forecasting, time-independent size distributions are used fre-116

quently (e.g., Passarelli et al., 2010).117

Other ways to specify point-process models include moment intensity118

functions, Papangelou intensities, and Palm intensities. Traditionally, when119

a point process is specified in these ways, it refers to a spatial point process.120

A point process can be completely determined by its likelihood (termino-121

logically, the local Janossy density, see Daley and Vere-Jones, 2003, 2008).122

This gives the joint probability density/mass function of the total number123

and each location of the particles in the process, assuming that the particles124

are indistinguishable. If one of the following three is known: (1)the moment125

intensities of all orders, (2) the conditional intensity, and (3) the Papangelou126

intensity, then the likelihood is also known (i.e., the point process is com-127

pletely determined). Here, we refer to Daley and Vere-Jones (2003, 2008)128

and Møller and Waagepetersen (2003) for the relations between the Janossy129

density and three other types of intensities. In this study, as we see in the fol-130

lowing sections, the method for replenishing missing data in a marked point131

process does not depend on any specific form of the conditional intensity.132

Therefore, it can be applied to spatial point processes as well if the ground133

space is one-dimensional and the conditional intensity is mark-separable.134

Before testing for missing data in a record of a marked point process and

replenishing the record, we need to know what a complete record looks like.
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Given a series of i.i.d. observations on X, x1, x2, · · · , xn, for a fixed x, the

empirical cdf

F̃X(x) =
1

n

n∑
i=1

1(xi < x)

converges almost surely to FX(x) and, thus, F̃X(Xj), j = 1, 2, · · · , n, con-135

verges to a unit uniform distribution. We call transformation x→ F̃X(x) the136

empirical probability integral transformation induced by {x1, x2, · · · , xn}. In137

a general marked point process N in [0, T ], the occurrence times of an ar-138

bitrary event may depend on the occurrence times and/or marks of other139

events. But the empirical probability integral transformation still results in140

an approximate unit uniform distribution since the transformation does not141

require the explicit formulation of the conditional intensity.142

Suppose N = {(ti,mi) : i = 1, 2, · · · , n} is a realization of a temporal143

marked point process in a time-mark domain [0, T ]×M, where M is the space144

of marks. Consider the following biscale empirical transformation (BEPIT):145

ΓN : [0, T ]×M → [0, 1]× [0, 1]

(t,m) → (t′,m′) =
(
F̃ (t), G̃(m)

)
,

(4)

where F̃ and G̃ are the empirical cdfs of {ti : i = 1, 2, · · · , n} and {mi :146

i = 1, 2, · · · , n}, respectively. If the marks of the events in the process are147

separable from the occurrence times, then {t′i : i = 1, 2, · · · , n} and {m′i :148

i = 1, 2, · · · , n}, which are the images of {ti : i = 1, 2, · · · , n} and {mi : i =149

1, 2, · · · , n}, respectively, approximately form a homogeneous Poisson process150

on [0, 1]× [0, 1]. It is straightforward to show the independence between F̃ (t)151

and G̃(m) and, thus, given the total number of events N , the number of152

events in a cell of area s⊆ [0, 1]× [0, 1] is a random variable from a binomial153

distribution B(N, s), which can be approximated by a Poisson distribution154

with mean Ns. The smaller s gets, the better this approximation.155
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Figure 1: A synthetic dataset of a marked point process. (a) Marks versus
occurrence times. (b) Empirical marks versus empirical occurrence times of
all the synthetic events under the transformation ΓN . (c) Empirical marks
versus empirical occurrence times for the observed incomplete record under
the transformation ΓNobs

. The red crosses in (a) and (b) represent the missing
events.

In the following discussions, we only consider the case of mark-separable156

Poisson processes. This is because, for the case of a more general pro-157

cess, say N , with a conditional intensity λ(t,m) , we can transform it into158

a Poisson process N ′ with a constant intensity by using the marked ver-159

sion of the transformation in (2), (ti,mi) ∈ N → (τi,mi) ∈ N ′, where160

τi =
∫ ti
0

∫
M λ(t,m) dm dt. Since such a transformation does not change the161

chronological order of the events or the mark-separable property of the pro-162

cess, the BEPIT transforms N and N ′ into the same point patterns.163

Example 1. In Figure 1(a), we simulate a Poisson process N (the combi-

nation of black and red points) with a temporal rate λ = 1 on [0, 2000], and

marks following an exponential distribution with mean 1, i.e.,

g(x) =

{
e−x, x > 0;

0, otherwise.

Figure 1(b) shows that under transformation (4), N is transformed into an164

approximately homogeneous Poisson process, say N ′, which has rate λ = 2000165

and i.i.d. marks uniformly distributed in [0, 1].166
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2.2 Detection of missing data167

When events in part of an observed time-mark range are missing, determin-168

istically or in probability, the separability between the occurrence times and169

the marks of the observed events is usually destroyed. In addition, the image170

of the observed Nobs mapped by the above BEPIT ΓNobs
, as defined in (4),171

may not be a homogeneous process.172

Example 2. Consider the simulated data in Example 1 (Figures 1(a)). As-173

sume the missing probability is174

q(t,m) = Pr{an event occurring at (t,m) is missing}

=

{
min

[
1, (1000−t)(1−m)

800

]
, if 0 < t < 800, m < 0.3,

0, otherwise.
(5)

If we thin the original process N (the combination of the red and black points)175

in Figure 1(a) with this missing probability, then the red points are deleted176

(i.e., they are missing from the record). Denote the remaining events (i.e., the177

observed process) as Nobs. Figure 1(c) shows that the image of the observed178

data of the process under the BEPIT ΓNobs
is not homogeneous.179

In the above biscale transformation, we do not need to know the exact180

forms of g(m), λg, or q. This method only uses the conditions that the181

original process is mark-separable, and that the process of missing events182

is time- and mark-dependent. Thus, for a temporal point process N with183

time-separable marks, we can test whether there are data missing from its184

observed record, Nobs, by testing the homogeneity of the image ΓNobs
(Nobs) of185

the observed data Nobs in the biscale transformed domain, when the missing186

values are time- and mark-dependent. After using the BEPIT ΓNobs
to map187

Nobs onto [0, 1]2, we divide the overall area of [0, 1]2 into L sub-regions of188
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equal areas, L = L1 × L2 cells. Here, L1 is the number of cells along the189

transformed time domain and L2 is the number of cells along the transformed190

mark domain. Then, we calculate the following statistics:191

R =
min{C1, C2, · · · , CL}
max{C1, C2, · · · , CL}

, and D = max{C1, C2, · · · , CL}−min{C1, C2, · · · , CL},

(6)

where C1, C2, · · · , CL are the numbers of events falling within each of the L192

cells. These two statistics are analogous to test statistics for homogeneous193

multinomial distributions, where “homogeneous” means that each category194

of the possible outputs has the same probability (Johnson, 1960; Johnson195

and Young, 1960; Corrado, 2011).196

Suppose that [0, 1]2 is divided into L = L1 × L2 cells with equal ar-197

eas, i.e., [0, 1]2 =
⋃L2

j=1

⋃L1

i=1[(i − 1)/L1, i/L2] × [(j − 1)/L2, j/L2), L1 and198

L2 being positive integers. For any point process N on [0, 1]2, if N is a199

homogenous Poisson process, then the numbers of events in the above L200

cells, C1, C2, · · · , CL, form a homogeneous (n,p)-multinomial random vec-201

tor, with p = (1/L, 1/L, · · · , 1/L). However, if N is obtained by applying202

the BEPIT to a completely observed mark-separable point process, then the203

row sum of Ci in the kth row (1 ≤ k ≤ L1), and the column sum of Ci204

in the jth column (1 ≤ j ≤ L2) are fixed to bkn/L1c − b(k − 1)n/L1c and205

bjn/L2c − b(j − 1)n/L2c, respectively, where bxc denotes the integer part206

of x, and n is the total number of events in N . Such constraints do not207

hold for the homogeneous multinomial distribution. Since the distributions208

of R and D are complicated, we obtain them by simulation: (1) with n fixed,209

simulating n events uniformly distributed in [0, 1]2; (2) applying the BEPIT210

to these n simulated events; (3) with the specified parameters, L1 and L2,211

calculating R and/or D for the transformed points.212
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Example 3. We use a simulation to test for missing data in the original and213

the thinned point processes, as shown in Figures 1(a) and (c), respectively.214

We simulate 500,000 sequences of the marked Poisson process as defined in215

Example 1 with the number of events in each simulation the same as those in216

Figure 1(a). For each simulated sequence, we apply the BEPIT (4) (which217

results in an image similar to the combination of red and black points in218

Figure 1(b)). Then, we divide the unit square image into five-by-five cells219

with equal sizes, and calculate R and D, as defined in (6). After that we220

plot the empirical cumulative distribution function of the 500,000 values of221

R and D, as shown in Figures 2(a). To test the thinned process, we simulate222

another 500,000 sequences of the marked point process with the total number223

of events in each simulation the same as those in Figure 1(c). The cumulative224

distributions of R and D are shown in 2(b). We can see that the hypothesis225

that there are no missing data in the observed (thinned) process can be rejected226

with a significance level below 0.001 (p ≤ 2 × 10−6, Figure 2(b)), while, for227

the original process, the p-values associated with R and D (0.396 and 0.700,228

respectively) provide no evidence for rejection.229

2.3 Imputation method and algorithm230

We start with a heuristic example to explain the algorithm. As shown in231

Figure 3, suppose that N is a homogeneous point process on [0, 1]2, and that232

events in the domain S are completely unobservable. Let Nobs ={(xi, yi) :233

(xi, yi) ∈ N \S}. Then the empirical distributions of the x- and y-coordinates234

are, respectively,235

F̃X(x) =

∑
i:(xi,yi)∈N\S wx,iI(xi ≤ x)∑

i:(xi,yi)∈N\S wx,i

(7)
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Figure 2: Statistical tests of the existence of missing data on (a) all the events
and (b) the observed events in the synthetic point process, with cumulative
distribution functions of R (red curve) and D (blue curve). R and D are
defined in (6), with L = L1 × L2, L1 = L2 = 5. The cumulative distribution
functions in (a) and (b) are obtained from 500,000 simulations with the same
numbers of events as in Figures 1(a) and (c), respectively. The black dots in
(a) and (b) are the statistics R and D, calculated for the original process in
1(a) and (c), respectively.

and236

F̃Y (y) =

∑
i:(xi,yi)∈N\S wy,iI(yi ≤ y)∑

i:(xi,yi)∈N\S wy,i

, (8)

where237

wx,i =
1

1−
∫ 1

0
I((xi, y) ∈ S)dy

, wy,i =
1

1−
∫ 1

0
I((x, yi) ∈ S)dx

. (9)

In most cases, N is not homogeneous in [0, 1]2, and the variation of the238

event density in S should be considered. Equation (9) should then be239

wx,i =
1

1−
∫ 1

0
I((xi, y) ∈ S)dFy(y)

, wy,i =
1

1−
∫ 1

0
I((x, yi) ∈ S)dFX(x)

.

(10)

Since FY and FX are unknown, we replace them by F̃Y and F̃X , respectively,240

i.e.,241

wx,i =
1

1−
∫ 1

0
I((xi, y) ∈ S)dF̃y(y)

, wy,i =
1

1−
∫ 1

0
I((x, yi) ∈ S)dF̃X(x)

.

(11)
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Figure 3: A heuristic estimation of the empirical distribution with missing
points. Suppose that, among events ei = (xi, yi), i = 1, 2, · · · , N , events
that fall in S cannot be observed. To estimate the empirical distribution
F̃X(x) of xi, i = 1, 2, · · · , N , weights need to be assigned to each observed
point. That is, when N is uniform, F̃X(x) =

∑N
i=1wx,iI(xi < x)/

∑N
i=1wx,i,

where wy,i = 1 −
∫ 1

0
I((xi, y) ∈ S) dy. In this figure, wx,1 is the total length

of the green part of the vertical line segments crossing over e1, and wx,2 = 1
since the vertical line segment crossing e2 has no intersection with S.

The above equation, together with (7) and (8), form a solvable equation242

system. We introduce below an algorithm to solve this equation system.243

Firstly, the missing region S needs to satisfy the following condition:244

Condtion 1. The projections of ([0, T ]×M)\S (i.e., the sub-region in which245

no event is missing) on the t- and m-axes cover the entire observation period246

and the entire range of possible marks, respectively.247

This requirement is to ensure that the empirical distributions of {ti}248

and {mi} can be restored. With Condition 1 satisfied, when a record is249

incomplete, we can determine the area, say S, outside of which the record is250

complete. This can be done either in the original mark-time plot based on251

prior knowledge of the data quality or in the BEPIT domain based on the252

statistics R or D.253

The algorithm to replenish the record includes three key steps: (1) trans-254

forming the process onto [0, 1]2 using the BEPIT to find a time-mark range255
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that likely contains all the missing events; (2) estimating a new empirical256

distribution function based on the data in the time-mark range, inside which257

events are supposed to be completely observed; (3) generating events in the258

missing region.259

Initial settings. Given the dataset Nobs = {(ti,mi) : i = 1, 2 · · · , n}260

observed in [0, T ]×M and a time-mark range S, known to include the261

missing events, suppose that S satisfies Condition 1.262

Step 1. We project the observed data and the range S that contains the263

missing data onto [0, 1]2 using the BEPIT in (4). Explicitly, set264

(t
(1)
i ,m

(1)
i ) = Γ

(1)
Nobs

(ti,mi) (12)

where265

Γ
(1)
Nobs

(t,m) =
(
F̃ (1)(t), G̃(1)(m)

)
=

(
1

n

n∑
j=1

1(tj < t),
1

n

n∑
j=1

1(mj < m)

)
.

(13)

Denote S(1) as the image of S under the transformation Γ
(1)
Nobs

.266

Step 2. Starting from ` = 1, repeat the following iterative computation until267

convergence (e.g., max{|t(`+1)
i − t(`)i |, |m

(`+1)
i −m(`)

i |} < ε), where ε is a268

given small positive number:269

(t
(`+1)
i ,m

(`+1)
i ) = Γ

(`+1)
Nobs

(t
(`)
i ,m

(`)
i ;S(`)), i = 1, 2, · · · , n, (14)

270

S(`+1) = Γ
(`+1)
Nobs

(S(`);S(`)), (15)

where271

Γ
(`+1)
Nobs

(t,m;A) =

(∑n
j=1w

(`)
1 (t

(`)
j ,m

(`)
j , A)1(t

(`)
j < t)∑n

j=1w
(`)
1 (t

(`)
j ,m

(`)
j , A)

,

∑n
j=1w

(`)
2 (t

(`)
j ,m

(`)
j , A)1(m

(`)
j < m)∑n

j w
(`)
2 (t

(`)
j ,m

(`)
j , A)

)
(16)
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with the weights defined by272

w
(`)
1 (t,m,A) =

1 ((t,m) 6∈ A)

1−
∫ 1

0
1 ((t,m′) ∈ A) dG(`)(m′)

(17)

273

w
(`)
2 (t,m,A) =

1 ((t,m) 6∈ A)

1−
∫ 1

0
1 ((t′,m) ∈ A) dF (`)(t′)

, (18)

for any regular region A ⊂ [0, 1]2. Denote the results upon convergence274

by N∗obs = {(t∗i ,m∗i ) : i = 1, 2 · · · , n} and S∗.275

Step 3. Generate a random number K from a negative binomial distribution,

with parameters (k, 1− |S∗|), where |S∗| is the area of S∗ and

k =
n∑

i=1

1((t∗i ,m
∗
i ) 6∈ S∗) = #(N∗obs \ S∗).

Step 4. Generate K random events independently, identically, and uni-276

formly distributed in S∗. Denote these newly generated events by N∗rep.277

Step 5. For each event in N∗obs, say, (tj,mj), that falls in S∗, sequentially278

remove from N∗rep the event that is the closest to (tj,mj).279

Step 6. Convert the resulting N∗rep from the last step to the original obser-280

vation space [0, T ]×M through linear interpolation:281

sj = LI
(
s∗j ; [0, t∗1, t

∗
2, · · · , t∗n, 1], [0, t1, t2, · · · , T ]

)
, (19)

282

vj = LI
(
v∗j ; [0, m∗1, m

∗
2, · · · , m∗n], [0, m1, m2, · · · , mn]

)
, (20)

for each (s∗j , v
∗
j ) ∈ N∗rep, where LI(x,A,B) represents the linear interpo-283

lation value of x, conditional on the function values for each component284

in A being locations corresponding to each component in B. Denote the285

set consisting of all (sj, vj) by Nrep.286

Final output. Return Nrep.287
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Example 4. The above algorithm is applied to the thinned dataset in Ex-288

ample 2. The output from Steps 4 to 6 is shown in Figures 4(b)-(c). The289

final output for our simulation example is shown in Figure 4(d). Tests us-290

ing statistics R and D in (6) give p-values of 0.605 and 0.718, respectively,291

providing no evidence to reject the hypothesis that the replenished dataset292

is complete (Figure 4(e)). Figure 4(f) compares the cumulative numbers of293

events in the original, the observed, and the replenished processes, showing294

that the replenishing algorithm recovers the missing data to some extent.295

Notes:296

(1) Equation (13) is the BEPIT that we mentioned in the previous section. If297

the data are completely recorded, {(t(1)i ,m
(1)
i ), i = 1, 2 · · · , n} form an298

approximately homogeneous process on [0, 1]2. As we can see in Figure299

2(b), the sparseness of points around the lower, left corner implies that300

smaller events are missing in the earlier period. Rather than choosing301

S in Figure 1(a), it is more convenient to specify S(1) directly in Figure302

2(a) or (b).303

(2) Step 2 is carried out based on the fact that the transformation ΓNobs
and304

S(1) = ΓNobs
(S) can be quite different from ΓN , owing to the missing305

data. The iteration in this step helps us construct a biscale transfor-306

mation as close as possible to the BEPIT yielded by the complete data307

(i.e., Γ∗Nobs
≈ ΓN). At the same time, the corresponding area that con-308

tains the missing data, S∗, is restored. This can be seen by comparing309

Figures 1(b) and 4(b)310
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Step 2 essentially solves F ∗ and G∗ in the following equations:311

F ∗(t) =

∑n
j=1w1(tj,mj, S)1 (tj < t)∑n

j=1w1(tj,mj, S)
, (21)

312

G∗(m) =

∑n
j=1w2(tj,mj, S)1 (mj < m)∑n

j=1w2(tj,mj, S)
, (22)

where313

w1(t,m, S) =
1 ((t,m) 6∈ S)

1−
∫
M
1 ((t,m′) ∈ S) dG∗(m′)

(23)

314

w2(t,m, S) =
1 ((t,m) 6∈ S)

1−
∫
M
1 ((t′,m) ∈ S) dF ∗(t′)

. (24)

If we define Γ∗Nobs
(t,m) = (F ∗(t), G∗(m)) as a mapping from [0, T ]×M315

to [0, 1]2, then Γ∗Nobs
(t,m) directly maps Nobs to N∗obs and S to S∗.316

The existence of a solution in the iteration given by (21) to (24) and317

the asymptotic property of the solution are given in the supplementary318

materials.319

(3) Steps 3 and 4 are based on the following fact: given a homogeneous320

Poisson process with an unknown occurrence rate, if there are k events321

falling within an area of S1, then the number of events falling in the322

complementary area S2 follows a negative binomial distribution with323

parameter (k, |S1|/(|S1|+ |S2|)) (e.g., DeGroot, 1986, 258–259).324

(4) In step 5, given the existing events observed in S, we should keep them325

and remove the same number of simulated points.326

One advantage of the algorithm is that if S is unknown, we can use the327

mark-time plot of N (1), as in Figure 2(b), to decide S(1) by justifying which328

region is likely to contain the missing events, and then continue with Step329

2. Once the replenishment is done, S can be obtained by substituting the330

coordinate of each point on the boundary of S∗ into (19) and (20).331

17

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Empirical times

E
m

pi
ric

al
 m

ar
ks

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

Empirical times

E
m

pi
ric

al
 m

ar
ks

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Empirical times

E
m

pi
ric

al
 m

ar
ks

0 500 1000 1500 2000

0
2

4
6

(d)

Times

M
ar

ks

(e)

R (D)

C
um

. P
ro

b.

p=0.4965

c.d.f. of R

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00 (0) 0.25 (25) 0.50 (50) 0.75 (75) 1.00 (100)

p=0.6451

c.d.f. of D

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00

(f)

Times

C
um

. F
re

q.

Original
Observed
Replenished

Figure 4: An application of the proposed replenising algorithm to the syn-
thetic dataset. (a) Rescaled marks versus rescaled occurrence times of the
observed events (black dots), with the biscale transformation ΓNobs

based on
the observed process. The blue polygon is the missing area, S(1). (b) Rescaled
marks versus rescaled occurrence times of the observed events (black dots),
with the rescaling Γ∗Nobs

based on the events outside of S. The blue polygon
is the missing area after transformation Γ∗Nobs

, i.e., S∗. (c) Rescaled marks
versus rescaled occurrence times of the observed and replenished events (blue
dots) (i.e., newly generated events after removing events that are closest to
any of those observed in S, with the rescaling Γ∗Nobs

based the empirical dis-
tributions of the events outside S. (d) Marks versus occurrence times of the
observed synthetic events and the replenished events. (e) Cumulative dis-
tribution functions of R (red curve) and D (blue curve) for testing missing
data in the replenished dataset in (c). (f) Cumulative frequencies versus
occurrence times for the original, observed, and replenished processes.

2.4 More simulations332

To illustrate the overall behavior of the above replenishing algorithm, we333

repeat the algorithm many times, with S fixed, for the following two cases:334

(1) Simulating a Poisson process with λ= 2000; (2) Simulating Poisson pro-335

cesses with rate λ drawn from a uniform distribution within [100, 3000].336

Both simulations have the same missing probability functions, as given by337
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(5). Figures 5(a) and (b) give the comparison between the true numbers of338

missing events and the number of the replenished events for cases (1) and339

(2), respectively. In Figure 5(a), since λ is fixed, the number of replenished340

events is independent of the true number of missing events, and has a larger341

variance. Some statistics related to these simulations, including the mean342

numbers and variances of the missing and the replenished points, the mean343

of relative differences, and the relative difference of means in 500 and 2000344

simulations are given in Table 1. In particular, the near-zero relative devia-345

tion of the mean number of the replenished events shows that the proposed346

method is consistent. Here, the larger values of the mean relative deviation of347

the number of replenished events from the number of missing events illustrate348

the nature of the uncertainty related to the problem. Such uncertainty is pro-349

duced not only by the randomness of the numbers of replenished and missing350

events, but also by the uncertainty in the estimation of the occurrence rate351

in the process from the events in the non-missing part. In Figure 5(b), the352

expected number of replenished events in many repeated simulations is close353

to the number of missing events. Moreover, the relative deviation decreases354

when the number of missing events (or λ) increases. These results imply that355

this algorithm replenishes the missing events reasonably well. Also, when λ356

or the number of events in the process is quite small, there are some outputs357

that the number of replenished events (when the number of missing events358

is less than 50 in Figure 5(b)), which is simply calculated by the number of359

simulated events in S in Steps 3 and 4 minus the number of observed events360

in S, is negative. This indicates that the existence of missing data in these361

situations cannot be quantified probabilistically.362
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Figure 5: Comparison between the number of true missing events and the
number of replenished events. (a) λ = 2, 000 fixed. (b) λ is drawn from
a uniform distribution between 100 and 3000. The dashed line represents
the case where the numbers of missing and replenished events are equal. The
blue and red curves represent the running mean and the corresponding single
and double standard deviation bands.

Table 1: Statistics related to Figure 5(a). #m: number of missing points;
#r: number of replenished points; ·: mean value; σ(·): standard deviation.

#simu. #m σ(#m) #r σ(#r)
[
|#m−#r|

#m

]
|#m−#r|

#m

500 228.274 14.929 232.006 63.926 0.226 0.016
2000 227.712 14.719 230.860 62.145 0.224 0.014

3 Application363

3.1 Volcanic eruption record364

In this example, we analyze the record of eruptions from the Hakone vol-365

cano. The Hakone volcano is an active volcano located at the northern366

boundary zone of the Izu-Mariana volcanic arc in central Japan (Yukutake367

et al., 2010; Honda et al., 2014). Data on Japanese explosive eruptions368

are compiled from the Smithsonian’s Global Volcanism Program database369

(Siebert and Simkin, 2002), the Large Magnitude Explosive Volcanic Erup-370

tions database (LaMEVE database, Crosweller et al., 2012
:
),

:::::
and

:::::::::::
additional371

:::::::::
Japanese

:::::::::::
databases

:
(Machida and Arai, 2003; Committee for Catalog of Qua-372

ternary Volcanoes in Japan (ed), 2000; Geological Survey of Japan, AIST373
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Figure 6: Results from applying the replenishment algorithm to volcanic
eruption data. (a) Marks versus occurrence times of the eruption events.
(b) Empirical distribution of marks versus that of occurrence times. (c)
Rescaled marks versus rescaled occurrence times, with the rescaling based
on the empirical distributions of the events outside of S. (d) Rescaled marks
versus rescaled occurrence times of the observed and replenished events (i.e.,
newly generated events after removing events that are closest to any of those
observed in S), with the rescaling based the empirical distributions of the
events outside of S. (e) Marks versus occurrence times of the observed and
replenished events. (f) Cumulative numbers of events against occurrence
times. The blue polygon is the area S and its corresponding mappings in
which the missing events fall. The green dots are the replenished events.

(ed), 2013; Hayakawa, 2010).374

For the Hakone volcano, 46 of 54 compiled events have an eruption mag-375

nitude (M = log10[erupted mass in kg] − 7; see Pyle (2015)) equal to or376

larger than 4 (Table S1 in the supplementary materials). Figure 6(a) shows377

the eruption magnitudes versus occurrence times of these 46 events. Figure378

6(b) shows the empirical distribution, transformed following Step 1 of the379

algorithm. Based on this plot, the polygon boundaries of S are determined380

based on the following assumptions. First, events of empirical marks < 0.8381
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(M < 5.7) are missing before the empirical time = 0.2 (165 ka). Second,382

the recording of larger events improves after the empirical time = 0.2 (165383

ka), though events of empirical marks < 0.4 (M < 5.0) are still missing.384

Third, the recording of events improves further, and there are no missing385

events after the empirical time = 0.6 (105 ka). The results from running the386

replenishing algorithm are shown in Figures 6(c) to 6(e).387

The estimated cumulative number of events for the replenished dataset388

shows a remarkable jump of around 180 ka (Figure 6(f)). This jump is caused389

by the replenished events synthesized around 180 ka (Figure 6(e)) based on390

the cluster of four large events (M ∼ 6) at 178 ka, 181 ka, 185 ka and 190391

ka (Figure 6(a); Hayakawa, 2010). The ages of the events at the Hakone392

volcano are still not fully agreed in the literature. For example, Yamamoto393

(2015) assumed that the ages of these eruptions are about 135 ka, 135 ka,394

180 ka and 215 ka, respectively. Therefore, the reliability of the jump of395

the cumulative number of events (Figure 6(f)) is a problem in volcanological396

dating of event ages. In addition, estimating the tephra volume and rounded397

eruption magnitude is also a problem in volcanology (Brown et al., 2014).398

For example, the analyzed dataset has clusters of events with magnitude 4399

and 5 (Figure 6(a)) and, therefore, the replenished events around 180 ka are400

also clustered around magnitudes 4 and 5 (Figure 6(e)).401

Note that it is difficult to determine the exact period of under-recording402

in the eruption history of each volcano. Kiyosugi et al. (2015) showed that403

there are still a lot of eruptions missing in the overall Japanese database,404

even for the last 100,000 years. Therefore, the polygon shape (Figure 6(b))405

that we used suggests that our replenished data have the same completeness406

level as the data outside the polygon. Our method is one possibility of407
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considering the under-recording of events in volcanic hazard assessments of408

explosive eruptions using geological records.409

3.2 Earthquake catalog: missing aftershocks410

It is well known that, immediately after a large earthquake, many aftershocks411

cannot be recorded because the seismic waveforms generated by the after-412

shocks cannot be distinguished from the overlapping waveforms generated413

by the mainshock on seismographs. In this section, we study the earthquake414

catalog from Southwest China, between January 1, 1990, and April 20, 2013,415

in a space range of 26◦ − 34◦N and 97◦ − 107◦E with minimum magnitude416

3.0 (Figure S2 in supplementary materials). This dataset is selected from the417

Chinese Earthquake catalog compiled by the China Earthquake Data Cen-418

ter (CEDC) (URL: http://data.earthquake.cn/index.html). The Wenchuan419

Mw 7.9 (Ms 8.0) earthquake, which occurred on May 12, 2008, was one420

of the two largest seismic events in China during the last 50 years. There421

are 6,249 events in the selected space and time range, among which 3,754422

events occurred after the Wenchuan earthquake, indicating low seismicity423

level above magnitude 3 in the study region before 2008. There are many424

aftershocks missing immediately after the mainshock. In particular, events of425

magnitudes between 3 and 4 are not properly recorded for a period of about426

one-and-a-half months after the mainshock. The majority of the events after427

May 12, 2008, can be taken as clustering events triggered by the Wenchuan428

mainshock. When analyzing seismicity in this area, Jia et al. (2014) and Guo429

et al. (2015) adopted a relatively high magnitude threshold of 4.0 to avoid430

biases in estimates caused by missing events, with 5,217 of the 6,249 events431

being ignored.432
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This example is quite different from the previous example and the sim-433

ulated data. The missing range can be well specified before replenishment:434

the missing values are known immediately after the occurrence of the main-435

shock, and the monitoring ability for events between magnitudes 3 and 4436

are restored one and half months later. The results are illustrated in Figure437

7. We can see that missing events take up about half the total number of438

events.439
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Figure 7: Results from applying the replenishment algorithm to the earth-
quake data from Southwest China. (a) Marks versus occurrence times of
the earthquake events. (b) Empirical distribution of marks versus that of
occurrence times. (c) Rescaled marks versus rescaled occurrence times, with
the rescaling based on the empirical distributions of the events outside of S.
(d) Rescaled marks versus rescaled occurrence times of the observed and re-
plenished events (i.e., newly generated events after removing events that are
closest to any of the observed in S), with the rescaling based on the empir-
ical distributions of the events outside S. (e) Marks versus occurrence times
of the observed and replenished events. (f) Cumulative numbers of events
against occurrence times. The blue polygon is the area S and its correspond-
ing mappings in which the missing events fall. The blue dots are replenished
events.

In seismology, the frequency of aftershock occurrences in an aftershock440
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sequence can be modeled by the empirical Omori-Utsu formula (e.g., Utsu441

et al., 1995)442

λ(t) =
K

(t+ c)p
, (25)

where K is an index proportional to the number of earthquakes excited by443

the mainshock, c is related to the period after the mainshock, from which444

the aftershock rate drops slowly, and p is the power related to the decay445

rate of aftershocks. Utsu et al. (1995) discussed how the parameters c and446

p change with the cutoff magnitude threshold, and hypothesized that such447

changes are caused by the fact that small aftershocks in an early stage of the448

sequence are missing from the catalog. We fit the above Omori-Utsu formula449

to both the original and the replenished catalogs (Table 2) and obtain the450

maximum likelihood estimates of parameters. The results show that after451

the replenishment, the Omori parameters c and p no longer change. We also452

fit the Omori formula to the original dataset, but only consider earthquakes453

that occurred at least 54 days after the mainshock. In this case, though c454

and p are slightly different from the estimates for the replenshed data from455

the starting time, they do not change much when the magnitude threshold456

changes from 2.95 to 4.15 (Table S2 in the supplementary materials). These457

results confirm numerically Utsu et al. (1995)’s hypothesis that missing small458

events in the early stage of an aftershock sequence causes the instability of459

the estimate of the Omori-Utsu formula.460

4 Conclusions and Discussions461

In this study, we proposed a method for replenishing missing data in marked462

temporal point processes, based on only the assumption that the marks of the463
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Magnitude
Replenished dataset Orig. dataset

threshold
[tmain, T ] [tmain, T ]

K̂ ĉ p̂ K̂ ĉ p̂
2.95 804.4 .1140 1.003 82.29 .0553 .6205
3.05 639.2 .1131 1.003 80.31 .0596 .6547
3.15 511.5 .1134 1.001 79.25 .0660 .6872
3.25 412.9 .1110 .9965 79.04 .0737 .7185
3.35 327.3 .1067 .9926 78.80 .0825 .7555
3.45 260.3 .1141 .9925 80.67 .0991 .7986
3.55 213.8 .1142 .9953 83.33 .1177 .8407
3.65 171.6 .1135 .9907 85.73 .1360 .8799
3.75 135.9 .1132 .9911 90.18 .1642 .9278
3.85 111.2 .1029 .9941 95.17 .1935 .9708
3.95 100.0 .1241 1.015 103.2 .2383 1.023
4.05 74.12 .1082 1.013 79.20 .1938 1.027
4.15 60.65 .1266 1.026 62.92 .1690 1.034

Table 2: Results from fitting the Omori-Utsu formula to the original and the
replenished datasets of earthquakes from Southwest China, with different
magnitude thresholds. tmain: occurrence time of the mainshock; T : end of
the time interval.

events are separable from the occurrence times, regardless of how the events464

interact on the time axis. The key point of this method is an algorithm that465

iteratively estimates the missing area in the transformed domain according466

to the parts where data are completely recorded. This method is applied467

to the eruption record of the Hakone volcano in Japan and the earthquake468

catalog from Southwest China, including the aftershock zone of the 2008469

Mw7.9 Wenchuan earthquake. The results show that the proposed method470

helps us evaluate the influence of missing data and correct the bias caused471

by missing data in our conclusion.472

Detection of the missing area In our two examples, the missing area473

is determined by visual inspection of the biscale transformed data for the474

historical records of the Hakone volcano and by prior information on the475

26

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



seismic network for the Wenchuan aftershock sequence. In most cases, such476

missing area needs to be determined by the experience of data analysts or477

information on the data from other sources. However, it is possible to turn478

the replenishing algorithm into an automated algorithm.479

Starting from S ′ = ∅, we divide the unit square into small cells in the480

biscale transformed domain obtained by applying the transformation defined481

in (9) to (13). Then, we carry out the statistical tests based on the statistics482

R or D on the cells that do not intersect S ′, as discussed in Section 3. If483

the test shows that missing cells exist, then we merge these cells into S ′.484

Such steps are iterated until no more cells are added to S ′. Since this topic485

belongs to the scope of data processing algorithms, we did not include it in486

this statistical article.487

Separability of marks As discussed earlier, the applicability of this al-488

gorithm depends on whether the mark distribution is separable from the489

occurrence time. If such dependence is known explicitly as a probability490

density function, say g(m | t), we can directly use the cdf that corresponds491

to f in Steps 1 and 2 in the algorithm (i.e., m
(`)
i = G(mi | ti) for ` ≥ 1).492

Of course, such dependence should also be considered when transforming the493

marks of replenished events from [0, 1] to the original mark space. If the mark494

is dependent on the time, but we do not know how it depends on the time,495

together with the existence of missing events, the replenishment/imputation496

problem becomes unidentifiable.497

Another case that is worth discussing is when the mark distribution is498

known and does not depend on time. We can again use the cdf of the marks499

in Steps 1 and 2 directly in the algorithm (i.e., by setting m
(`)
i = G(mi) for500
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` ≥ 1). Such missing data can also be estimated using Bayesian methods, as501

in Ogata and Katsura (1993), and then replenished by direct simulation.502

Figure 8: Epicenter map of imputed earthquakes (solid blue circles) for the
Wenchuan aftershock sequence.

Imputation of locations This method is powerful for marked tempo-503

ral point processes, but it cannot be extended easily to high-dimension or504

spatiotemporal cases. This is because in most cases, the process is not ho-505

mogeneous in space. However, it is still possible case by case. For example,506

in replenishing the Wenchuan aftershock sequence, we can use the clustering507

feature of earthquakes. A simple replenishing algorithm is as follows. For508

each simulated event, find a fixed number, for example, 50, of events closest509

to it in time in the observed process. Then we construct a Delaunay tessella-510

tion network for these 50 events and select with equal probabilities one of the511

Delaunay triangles, and put this simulated event randomly and uniformly in512

this selected triangle. An example of the imputed locations of the missing513
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aftershocks of the Wenchuan earthquake is shown in Figure 8. For a spatially514

inhibitive process, different methods should be used.515

In summary, the method proposed in this study is useful in dealing with516

missing data problem in point-process observations, such as volcano eruption517

records and historical or short-term earthquake catalogs.518
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